اثر کنجاله کنجد تخمیر شده با مخلوطی از لاکتوباسیلوس پلانتاروم، باسیلوس سابتیلیس و قارچ آسپرژیلوس نایجر بر عملکرد رشد، خصوصیات لاشه، فراسنجه‌های خونی، ایمنی و معدنی‌شدن استخوان در جوجه‌های گوشتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه آزاد اسلامی واحد قائم شهر، قائم شهر، ایران

2 گروه علوم دامی- دانشکده کشاورزی- دانشگاه آزاد اسلامی واحد قائم شهر- قائم شهر- ایران

چکیده

این تحقیق جهت بررسی اثر کنجاله کنجد تخمیرشده بر رشد، خصوصیات لاشه، فراسنجه‌های خونی، ایمنی و معدنی‌شدن استخوان در جوجه‌های گوشتی انجام شد. از 525 قطعه جوجه گوشتی در 7 تیمار و هر تیمار دارای 5 تکرار استفاده شد. برای تخمیر کنجاله کنجد از دو نوع باکتری لاکتوباسیلوس پلانتاروم PTCC1058 و باسیلوس سابتیلیس PTCC1156 همرا با قارچ آسپرژیلوس نایجر PTCC5010 استفاده شد. تیمارهای آزمایشی شامل: 1یک جیره پایه و جیره های بر پایه 6 و 12 درصد کنجاله کنجد تخمیری و جیره پایه حاوی 6 و 12 درصد کنجاله کنجد خام با و بدون آنزیم فیتاز بود. نتایج نشان دهنده بهبود ضریب تبدیل غذایی در جوجه های گوشتی تغذیه شده با سطوح 6 و 12 درصد کنجاله کنجد تخمیری و نیز 6 درصد کنجاله کنجد خام همراه با آنزیم فیتاز بود (05/0>P). بالاترین و پایین‌ترین غلظت گلوکز خون به ترتیب در تیمار حاوی 6 درصد کنجاله کنجد خام + آنزیم فیتاز و تیمار حاوی 12 درصد کنجاله کنجد خام + آنزیم فیتاز مشاهده شد (05/0>P). بالاترین تیتر گامبورو در تیمار حاوی 12 درصد کنجاله کنجد خام + آنزیم فیتاز مشاهده شد (05/0>P). بالاترین درصد خاکستر، فسفر و کلسیم در تیمار حاوی 6 درصد کنجاله کنجد تخمیر شده مشاهده شد (05/0>P). نتیجه کلی تحقیق حاضر نشان داد که فرآوری کنجاله کنجد به روش تخمیر سبب بهبود عملکرد رشد و افزایش سطح تیتر آنتی‌بادی علیه بیماری گامبورو شد. همچنین افزودن آنزیم فیتاز به جبره های حاوی کنجاله کنجد خام سبب بهبود ویژگی های استخوان درشت نی در جوجه های گوشتی شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of fermented sesame meal with a mixture of Lactobacillus plantarum, Bacillus subtilis and Aspergillus niger fungus on growth performance, carcass characteristics, blood parameters, immunity and bone mineralization in broiler chickens

نویسندگان [English]

  • Yaser Salari Telmadarreh 1
  • Vahid Rezaeipour 1
  • Rohullah Abdullahpour 1
  • Shahabodin Gharahveysi 2
1 Department of Animal Science, Faculty of Agriculture, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
2 Department of Animal Science, Faculty of Agriculture, Qaemshahr Branch-Islamic Azad University, Qaemshahr, Iran
چکیده [English]

This study was conducted to investigate the effect of fermented sesame meal on performance, carcass characteristics, blood parameters, immunity and bone mineralization in broiler chickens. A total of 525 broiler chicks were randomly allocated into 7 treatments with five replicate per each. Lactobacillus plantarum PTCC1058 and Bacillus subtilis PTCC1156 in combination with Aspergillus niger PTCC5010 were used to ferment sesame flour. ​Experimental treatments included a basal diet and basal diet containing 6 or 12% fermented sesame meal and 6 or 12% untreated sesame meal with or without phytase enzyme. The treatment containing 6% USM+phytase enzyme and 12% FSM showed the highest weight gain during the starter and total phases in broilers, respectively (P<0.05). During total phase, feed conversion ratio improved in broilers fed diets containing 6 and 12% FSM and USM+phytase (P<0.05). The highest and lowest blood glucose concentrations were observed in the treatments containing 6% USM + phytase enzyme and 12% USM + phytase enzyme, respectively (P <0.05). The results of antibody titer against Gamboro and bronchitis showed that there was a significant difference in the titer against Gamboro between experimental treatments (p<0.05). The highest percentage of ash, phosphorus and calcium was observed in the treatment containing 6% FSM (P<0.05). The general result of the present study showed that the processing of sesame meal by fermentation method improved growth prformance and increased the level of antibody titer against Gamboro disease in broiler chickens. In addition, Phytase supplement in sesame meal diets improved bone mineralization in broilers.

کلیدواژه‌ها [English]

  • Broiler chickens
  • Blood parameters
  • Sesame meal
  • Bone mineralization

Extended Abstract

Introduction

Today, the use of microbial fermentation method for producing high-quality protein products free from anti-nutritional compounds has been considered. In this method, bacterial species (such as Enterococcus faecium and Bacillus subtilis) and fungal species (such as Aspergillus niger and Aspergillus oryzae) are used based on fermentation objectives. However, in the field of using a combination of fungi and bacteria for fermenting sesame meal and comparing this processing method with adding phytase enzyme in diets containing sesame meal for broilers, there have not been many studies conducted.

 

Materials and methods

To carry out the fermentation process of sesame meal, two types of bacteria, Lactobacillus plantarum (PTCC1058) and Bacillus subtilis (PTCC1156), and the fungus Aspergillus niger (PTCC5010) were prepared in lyophilized vials from the Institute of Scientific and Industrial Research of Iran. They were activated using MRS-agar and Nutrient-agar media at a temperature of 37 degrees Celsius, respectively.A total number of 525-day-old Ross broiler chicks (male sex) were randomly distributed into 7 dietary treatments with 5 replicates of 10 birds. Growth performance variables, carcass charactersitics and serum metabolites have been measured in the present study and all data were analyzed using SAS software.

 

Results and discussion

The results of body weight gain showed that there was a significant difference in the starter period and grower between experimental treatments. The results of feed conversion ratio showed that there was a significant difference in the starter period, grower and the total period between experimental treatments. The highest and lowest blood glucose concentrations were observed in the treatment containing 6% untreated sesame meal + phytase enzyme and the treatment containing 12% untreated sesame meal + phytase enzyme, respectively. The highest titer was observed in the treatment containing 12% untreated sesame meal + phytase enzyme. The highest percentage of ash, phosphorus and calcium was observed in the treatment containing 6% fermented sesame meal.

 

Conclusions

The overall findings of the present study demonstrated that processing untreated sesame meal using fermentation with fungi and bacteria improved growth performance and increased the titer of antibodies against Gumboro disease. Additionally, adding enzymes to diets containing untreated sesame meal was effective in improving bone characteristics. In general, the inclusion of 12% fermented sesame meal in broiler diets is recommended

 

 

Al Harthi A. & El Deek AA. (2009). Evaluation of sesame meal replacement in broiler diets with phytase and probiotic supplementation. Egyption Poultry Science Journal, 29, 99-125.
Alinejad M., Hajkhodadadi I., Ghasemi H.A., & Khojastehkey M. (2023). Evaluation of different sesame meal level with internalal enzyme on production, egg quality traits, blood metabolite and jejenum morphology of layer quail in middle production phase. Animal Sciences Journal35(137), 131-144.
Angel R., Tamim NM., Applegate TJ., Dhandu AS. & Ellestad LE. (2002). Phytic acid chemistry: influence on phytin-phosphorus availability and phytase efficacy. Journal of Applied Poultry Research, 11(4), 471-480.
AOAC. (1995). Official Methods of Analysis, 16th ed. Association of Official Analytical Chemists, Arlington, VA.
Bahadori MM., Rezaeipour V., Abdullahpour R. & Irani M. (2023). The combined effects of sesame meal bioactive peptides and plant essential oils on growth performance, nutrient digestibility, immune and hematological parameters in broiler chickens. Iranian Journal of Animal Science, 54(2), 175-186.
Bassiri A. & Nahapetian A. (1977). Differences in concentrations and interrelationships of phytate, phosphorus, magnesium, calcium, zinc, and iron in wheat varieties grown under dryland and irrigated conditions. Journal of Agricultural and Food Chemistry, 25(5), 1118-1122.
Boling SD., Webel DM., Mavromichalis I., Parsons CM. & Baker DH. (2000). The effects of citric acid on phytate-phosphorus utilization in young chicks and pigs. Journal of Animal Science, 78(3), 682-689.
Chiang G., Lu WQ., Piao XS., Hu JK., Gong LM. & Thacker PA. (2009). Effects of feeding solid-state fermented rapeseed meal on performance, nutrient digestibility, intestinal ecology and intestinal morphology of broiler chickens. Asian-Australasian Journal of Animal Sciences, 23(2), 263-271.
Cowieson AJ., Ptak A., Maćkowiak P., Sassek M., Pruszyńska-Oszmałek E., Żyła K., & Józefiak D. (2013). The effect of microbial phytase and myo-inositol on performance and blood biochemistry of broiler chickens fed wheat/corn-based diets. Poultry Science, 92(8), 2124-2134.
Diarra SS., Usman BA., Kwari ID. & Yisa A. (2008). Effects of processing methods on the antinutrional factor and the nutritional comparison of sesame (Sesamum indicum l) seed. Journal of Veterinary Sciences, 7(1).
Duncan D. B. (1955). Multiple range and multiple F tests. Biometrics, 1: 1-42.‏
Eizaguirre I., Urkia NG., Asensio AB., Zubillaga I., Zubillaga P., Vidales C., Garcia-Arenzana JM. & Aldazabal P. (2002). Probiotic supplementation reduces the risk of bacterial translocation in experimental short bowel syndrome. Journal of Pediatric Surgery, 37(5), 699-702.
Feng J., Liu X., Xu ZR., Liu YY. & Lu YP. (2007). Effects of Aspergillus oryzae 3.042 fermented soybean meal on growth performance and plasma biochemical parameters in broilers. Animal Feed Science and Technology, 134(3-4), 235-242.
Ghavidel-Heydari S., Bagherzadeh-Kasmani F. & Mehri M. (2021). The effect of fermented sesame meal or its combination with probiotics on the performance, carcass triats, blood parameters, and humoral immunity in growing japanese quails. Poultry Science Journal.
Ghazvinian K., Pour, HA. & Alanghi AR. (2016). Effect of sesame meal supplementation to the feed on performance, blood parameters and physiology characteristics in Japanese quail. Entomology and Applied Science Letters, 3, 71-75.
Hajimohammadi A., Mottaghitalab M., & Hashemi M. (2020). Influence of microbial fermentation processing of sesame meal and enzyme supplementation on broiler performances. Italian Journal of Animal Science, 19(1), 712-722.
Hudson L., Hay FC. & Hudson  L. (1989). Practical immunology (Vol. 3). Oxford: Blackwell scientific publications.
Jiménez N., Esteban-Torres M., Mancheño JM., de Las Rivas B. & Muñoz R. (2014). Tannin degradation by a novel tannase enzyme present in some Lactobacillus plantarum strains. Applied and Environmental Microbiology, 80(10), 2991-2997.
Jimoh WA. & Aroyehun HT. (2011). Evaluation of Cooked and Mechanically Defatted Sesame (Sesamum indicum) Seed Meal as a Replacer for Soybean Meal in the Diet of African Catfish (Clarias gariepinus). Turkish Journal of Fisheries and Aquatic Sciences, 11(2).
Khan S.H. (2018). Recent advances in role of insects as alternative protein source in poultry nutrition. Journal of Applied Animal Research, 46(1), 1144-1157.
Liu T., She R., Wang K., Bao H., Zhang Y., Luo D., Hu Y., Ding Y., Wang D. & Peng K. (2008). Effects of rabbit sacculus rotundus antimicrobial peptides on the intestinal mucosal immunity in chickens. Poultry Science, 87(2), 250-254.
Mamputu M. & Buhr R.J. (1995). Effect of substituting sesame meal for soybean meal on layer and broiler performance. Poultry Science, 74(4), 672-684.
Mazaheri A., Shams Shargh M., Dastar B., & Ashayerizadeh O. (2018). Comparison the effects of raw and fermented sesame meal by solid state fermentation on performance, cacass characteristic, and intestinal morphology in broiler chickens. Animal Sciences Journal31(120), 147-158. (In Persian)
Moraïs S., Shterzer N., Grinberg I.R., Mathiesen G., Eijsink VG., Axelsson L., Lamed R., Bayer EA. & Mizrahi I. (2013). Establishment of a simple Lactobacillus plantarum cell consortium for cellulase-xylanase synergistic interactions. Applied and Environmental Microbiology, 79(17), 5242-5249.
Niba AT., Beal, JD., Kudi AC. & Brooks PH. (2009). Potential of bacterial fermentation as a biosafe method of improving feeds for pigs and poultry. African Journal of Biotechnology, 8(9).
Olaiya O.D. & Makinde O.J. (2015). Response of broiler chickens fed diets containing differently processed sesame (Sesame indicum L.) seed meal. Academy Research Journal of Agricultural Science Research, 3(2), 13-20.
Olude O., George F. & Alegbeleye W. (2016). Utilization of autoclaved and fermented sesame (Sesamum indicum L.) seed meal in diets for Til-aqua natural male tilapia. Animal Nutrition, 2(4), 339-344
Paton A.W., Morona R. & Paton JC. (2006). Designer probiotics for prevention of enteric infections. Nature Reviews Microbiology, 4(3), 193-200.
Rahimian Y., Tabatabaie S., Valiollahi S., Toghiani M., Kheiri F., Zamani F., Rafiee A., Miri Y., Asgarian F. & Khajeali Y. (2013). Effect of use cumulative levels of sesame (Sesamum indicum) meal with phytase enzyme on performance of broiler chicks. Scientific Journal of Veterinary Advances, 2(12), 178-188.
Ram R., Catlin D., Romero J. & Cowley C. (1990). Sesame: new approaches for crop improvement. In Advances in new crops. Proceedings of the first national symposium'New crops: research, development, economics', Indianapolis, Indiana, USA, 23-26 October 1988. (pp. 225-228). Timber Press.
Rama Rao SV., Raju MVLN., Panda AK., Poonam NS., Sunder GS. & Sharma R.P. (2008). Utilisation of sesame (Sesamum indicum) seed meal in broiler chicken diets. British Poultry Science, 49(1), 81-85.
Ravindran V. (1995). Phytates: occurrence, bioavailability and implications in poultry nutrition. Poultry and Avian Biology Reviews, 6, 125-143.
Rezaeipour V., Barsalani A. & Abdullahpour R. (2016). Effects of phytase supplementation on growth performance, jejunum morphology, liver health, and serum metabolites of Japanese quails fed sesame (Sesamum indicum) meal-based diets containing graded levels of protein. Tropical Animal Health and Production, 48, 1141-1146.
Sacakli P., Sehu A., Genc B. & Selcuk Z. (2005). The effect of phytase and organic acid on growth performance, carcass yield and tibia ash in quails fed diets with low levels of non-phytate phosphorus. Asian-australasian Journal of Animal Sciences, 19(2), 198-202.
Saima M., Shad A., Pasha TN., Akram M., Ditta YA. & Khan MZU. (2014). Effect of microbial phytase supplementation on growth performance of Japanese quails. Journal Animal Poultry Sciences, 24, 19-23.
SAS. (2001). Statistical Analysis System User's Guide: Statistics. SAS Institute, Cary, NC.
Sebastian S., Touchburn S.P., Chavez E.R. & Lague P.C. (1996). The effects of supplemental microbial phytase on the performance and utilization of dietary calcium, phosphorus, copper, and zinc in broiler chickens fed corn-soybean diets. Poultry Science, 75(6), 729-736.
Selle PH. & Ravindran V. (2007). Microbial phytase in poultry nutrition. Animal feed science and technology, 135(1-2), 1-41.
Shanti H., Abo Omar J., Al-Shakhrit K. & Ghany AA. (2012). Performance and some blood constituents of broilers fed sesame meal supplemented with microbial phytase. Asian Pacific Journal of Tropical Biomedicine, 1, 1-8.
Shi C., Zhang Y., Lu Z. & Wang Y. (2017). Solid-state fermentation of corn-soybean meal mixed feed with Bacillus subtilis and Enterococcus faecium for degrading antinutritional factors and enhancing nutritional value. Journal of Animal science and Biotechnology, 8(1), 1-9.
Singhania R.R., Patel A.K., Soccol C.R. & Pandey A. (2009). Recent advances in solid-state fermentation. Biochemical Engineering Journal, 44(1), 13-18.
Sun H., Tang JW., Yao XH., Wu YF., Wang X. & Feng J. (2012). Improvement of the Nutritional Quality of Cottonseed Meal by Bacillus subtilis and the Addition of Papain. International Journal of Agriculture & Biology, 14(4).
Tsai CF., Lin J., Wang C.H., Tsai C.S., Chang SC. & Lee TT. (2022). Effects of fermented soybean meal with Bacillus velezensis, Lactobacillus spp. or their combination on broiler performance, gut antioxidant activity and microflora. Animal Bioscience, 35(12), 1892.
Wang W., Wang Z., Yang H., Cao Y. & Zhu X. (2013). Effects of phytase supplementation on growth performance, slaughter performance, growth of internal organs and small intestine, and serum biochemical parameters of broilers.Open Journal of Animal Science, 3(3), 1-6.
Wiryawan K.G. & Dingle J.G. (1999). Recent research on improving the quality of grain legumes for chicken growth. Animal Feed Science and Technology, 76(3-4), 185-193.
Yakubu, B. & Alfred, B. (2014). Nutritional evaluation of toasted white sesame seed meal Sesamum indicum as a source of methionine on growth performance, carcass characteristics, Haematological and biochemical indices of finisher broiler chickens. Journal of Agriculture and Veterinary Science, 7(1), 46-52.
Zhu F., Zhang B., Li J. & Zhu L. (2020). Effects of fermented feed on growth performance, immune response, and antioxidant capacity in laying hen chicks and the underlying molecular mechanism involving nuclear factor-κB. Poultry science, 99(5), 2573-2580.