Al Harthi A. & El Deek AA. (2009). Evaluation of sesame meal replacement in broiler diets with phytase and probiotic supplementation. Egyption Poultry Science Journal, 29, 99-125.
Alinejad M., Hajkhodadadi I., Ghasemi H.A., & Khojastehkey M. (2023). Evaluation of different sesame meal level with internalal enzyme on production, egg quality traits, blood metabolite and jejenum morphology of layer quail in middle production phase. Animal Sciences Journal, 35(137), 131-144.
Angel R., Tamim NM., Applegate TJ., Dhandu AS. & Ellestad LE. (2002). Phytic acid chemistry: influence on phytin-phosphorus availability and phytase efficacy. Journal of Applied Poultry Research, 11(4), 471-480.
AOAC. (1995). Official Methods of Analysis, 16th ed. Association of Official Analytical Chemists, Arlington, VA.
Bahadori MM., Rezaeipour V., Abdullahpour R. & Irani M. (2023). The combined effects of sesame meal bioactive peptides and plant essential oils on growth performance, nutrient digestibility, immune and hematological parameters in broiler chickens. Iranian Journal of Animal Science, 54(2), 175-186.
Bassiri A. & Nahapetian A. (1977). Differences in concentrations and interrelationships of phytate, phosphorus, magnesium, calcium, zinc, and iron in wheat varieties grown under dryland and irrigated conditions. Journal of Agricultural and Food Chemistry, 25(5), 1118-1122.
Boling SD., Webel DM., Mavromichalis I., Parsons CM. & Baker DH. (2000). The effects of citric acid on phytate-phosphorus utilization in young chicks and pigs. Journal of Animal Science, 78(3), 682-689.
Chiang G., Lu WQ., Piao XS., Hu JK., Gong LM. & Thacker PA. (2009). Effects of feeding solid-state fermented rapeseed meal on performance, nutrient digestibility, intestinal ecology and intestinal morphology of broiler chickens. Asian-Australasian Journal of Animal Sciences, 23(2), 263-271.
Cowieson AJ., Ptak A., Maćkowiak P., Sassek M., Pruszyńska-Oszmałek E., Żyła K., & Józefiak D. (2013). The effect of microbial phytase and myo-inositol on performance and blood biochemistry of broiler chickens fed wheat/corn-based diets. Poultry Science, 92(8), 2124-2134.
Diarra SS., Usman BA., Kwari ID. & Yisa A. (2008). Effects of processing methods on the antinutrional factor and the nutritional comparison of sesame (Sesamum indicum l) seed. Journal of Veterinary Sciences, 7(1).
Duncan D. B. (1955). Multiple range and multiple F tests. Biometrics, 1: 1-42.
Eizaguirre I., Urkia NG., Asensio AB., Zubillaga I., Zubillaga P., Vidales C., Garcia-Arenzana JM. & Aldazabal P. (2002). Probiotic supplementation reduces the risk of bacterial translocation in experimental short bowel syndrome. Journal of Pediatric Surgery, 37(5), 699-702.
Feng J., Liu X., Xu ZR., Liu YY. & Lu YP. (2007). Effects of Aspergillus oryzae 3.042 fermented soybean meal on growth performance and plasma biochemical parameters in broilers. Animal Feed Science and Technology, 134(3-4), 235-242.
Ghavidel-Heydari S., Bagherzadeh-Kasmani F. & Mehri M. (2021). The effect of fermented sesame meal or its combination with probiotics on the performance, carcass triats, blood parameters, and humoral immunity in growing japanese quails. Poultry Science Journal.
Ghazvinian K., Pour, HA. & Alanghi AR. (2016). Effect of sesame meal supplementation to the feed on performance, blood parameters and physiology characteristics in Japanese quail. Entomology and Applied Science Letters, 3, 71-75.
Hajimohammadi A., Mottaghitalab M., & Hashemi M. (2020). Influence of microbial fermentation processing of sesame meal and enzyme supplementation on broiler performances. Italian Journal of Animal Science, 19(1), 712-722.
Hudson L., Hay FC. & Hudson L. (1989). Practical immunology (Vol. 3). Oxford: Blackwell scientific publications.
Jiménez N., Esteban-Torres M., Mancheño JM., de Las Rivas B. & Muñoz R. (2014). Tannin degradation by a novel tannase enzyme present in some Lactobacillus plantarum strains. Applied and Environmental Microbiology, 80(10), 2991-2997.
Jimoh WA. & Aroyehun HT. (2011). Evaluation of Cooked and Mechanically Defatted Sesame (Sesamum indicum) Seed Meal as a Replacer for Soybean Meal in the Diet of African Catfish (Clarias gariepinus). Turkish Journal of Fisheries and Aquatic Sciences, 11(2).
Khan S.H. (2018). Recent advances in role of insects as alternative protein source in poultry nutrition. Journal of Applied Animal Research, 46(1), 1144-1157.
Liu T., She R., Wang K., Bao H., Zhang Y., Luo D., Hu Y., Ding Y., Wang D. & Peng K. (2008). Effects of rabbit sacculus rotundus antimicrobial peptides on the intestinal mucosal immunity in chickens. Poultry Science, 87(2), 250-254.
Mamputu M. & Buhr R.J. (1995). Effect of substituting sesame meal for soybean meal on layer and broiler performance. Poultry Science, 74(4), 672-684.
Mazaheri A., Shams Shargh M., Dastar B., & Ashayerizadeh O. (2018). Comparison the effects of raw and fermented sesame meal by solid state fermentation on performance, cacass characteristic, and intestinal morphology in broiler chickens. Animal Sciences Journal, 31(120), 147-158. (In Persian)
Moraïs S., Shterzer N., Grinberg I.R., Mathiesen G., Eijsink VG., Axelsson L., Lamed R., Bayer EA. & Mizrahi I. (2013). Establishment of a simple Lactobacillus plantarum cell consortium for cellulase-xylanase synergistic interactions. Applied and Environmental Microbiology, 79(17), 5242-5249.
Niba AT., Beal, JD., Kudi AC. & Brooks PH. (2009). Potential of bacterial fermentation as a biosafe method of improving feeds for pigs and poultry. African Journal of Biotechnology, 8(9).
Olaiya O.D. & Makinde O.J. (2015). Response of broiler chickens fed diets containing differently processed sesame (Sesame indicum L.) seed meal. Academy Research Journal of Agricultural Science Research, 3(2), 13-20.
Olude O., George F. & Alegbeleye W. (2016). Utilization of autoclaved and fermented sesame (Sesamum indicum L.) seed meal in diets for Til-aqua natural male tilapia. Animal Nutrition, 2(4), 339-344
Paton A.W., Morona R. & Paton JC. (2006). Designer probiotics for prevention of enteric infections. Nature Reviews Microbiology, 4(3), 193-200.
Rahimian Y., Tabatabaie S., Valiollahi S., Toghiani M., Kheiri F., Zamani F., Rafiee A., Miri Y., Asgarian F. & Khajeali Y. (2013). Effect of use cumulative levels of sesame (Sesamum indicum) meal with phytase enzyme on performance of broiler chicks. Scientific Journal of Veterinary Advances, 2(12), 178-188.
Ram R., Catlin D., Romero J. & Cowley C. (1990). Sesame: new approaches for crop improvement. In Advances in new crops. Proceedings of the first national symposium'New crops: research, development, economics', Indianapolis, Indiana, USA, 23-26 October 1988. (pp. 225-228). Timber Press.
Rama Rao SV., Raju MVLN., Panda AK., Poonam NS., Sunder GS. & Sharma R.P. (2008). Utilisation of sesame (Sesamum indicum) seed meal in broiler chicken diets. British Poultry Science, 49(1), 81-85.
Ravindran V. (1995). Phytates: occurrence, bioavailability and implications in poultry nutrition. Poultry and Avian Biology Reviews, 6, 125-143.
Rezaeipour V., Barsalani A. & Abdullahpour R. (2016). Effects of phytase supplementation on growth performance, jejunum morphology, liver health, and serum metabolites of Japanese quails fed sesame (Sesamum indicum) meal-based diets containing graded levels of protein. Tropical Animal Health and Production, 48, 1141-1146.
Sacakli P., Sehu A., Genc B. & Selcuk Z. (2005). The effect of phytase and organic acid on growth performance, carcass yield and tibia ash in quails fed diets with low levels of non-phytate phosphorus. Asian-australasian Journal of Animal Sciences, 19(2), 198-202.
Saima M., Shad A., Pasha TN., Akram M., Ditta YA. & Khan MZU. (2014). Effect of microbial phytase supplementation on growth performance of Japanese quails. Journal Animal Poultry Sciences, 24, 19-23.
SAS. (2001). Statistical Analysis System User's Guide: Statistics. SAS Institute, Cary, NC.
Sebastian S., Touchburn S.P., Chavez E.R. & Lague P.C. (1996). The effects of supplemental microbial phytase on the performance and utilization of dietary calcium, phosphorus, copper, and zinc in broiler chickens fed corn-soybean diets. Poultry Science, 75(6), 729-736.
Selle PH. & Ravindran V. (2007). Microbial phytase in poultry nutrition. Animal feed science and technology, 135(1-2), 1-41.
Shanti H., Abo Omar J., Al-Shakhrit K. & Ghany AA. (2012). Performance and some blood constituents of broilers fed sesame meal supplemented with microbial phytase. Asian Pacific Journal of Tropical Biomedicine, 1, 1-8.
Shi C., Zhang Y., Lu Z. & Wang Y. (2017). Solid-state fermentation of corn-soybean meal mixed feed with Bacillus subtilis and Enterococcus faecium for degrading antinutritional factors and enhancing nutritional value. Journal of Animal science and Biotechnology, 8(1), 1-9.
Singhania R.R., Patel A.K., Soccol C.R. & Pandey A. (2009). Recent advances in solid-state fermentation. Biochemical Engineering Journal, 44(1), 13-18.
Sun H., Tang JW., Yao XH., Wu YF., Wang X. & Feng J. (2012). Improvement of the Nutritional Quality of Cottonseed Meal by Bacillus subtilis and the Addition of Papain. International Journal of Agriculture & Biology, 14(4).
Tsai CF., Lin J., Wang C.H., Tsai C.S., Chang SC. & Lee TT. (2022). Effects of fermented soybean meal with Bacillus velezensis, Lactobacillus spp. or their combination on broiler performance, gut antioxidant activity and microflora. Animal Bioscience, 35(12), 1892.
Wang W., Wang Z., Yang H., Cao Y. & Zhu X. (2013). Effects of phytase supplementation on growth performance, slaughter performance, growth of internal organs and small intestine, and serum biochemical parameters of broilers.Open Journal of Animal Science, 3(3), 1-6.
Wiryawan K.G. & Dingle J.G. (1999). Recent research on improving the quality of grain legumes for chicken growth. Animal Feed Science and Technology, 76(3-4), 185-193.
Yakubu, B. & Alfred, B. (2014). Nutritional evaluation of toasted white sesame seed meal Sesamum indicum as a source of methionine on growth performance, carcass characteristics, Haematological and biochemical indices of finisher broiler chickens. Journal of Agriculture and Veterinary Science, 7(1), 46-52.
Zhu F., Zhang B., Li J. & Zhu L. (2020). Effects of fermented feed on growth performance, immune response, and antioxidant capacity in laying hen chicks and the underlying molecular mechanism involving nuclear factor-κB. Poultry science, 99(5), 2573-2580.