بررسی آثار جایگزینی سیلاژ ذرت با سیلاژ جو بر عملکرد گاوهای پرتولید هلشتاین ‏

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری،گروه علوم دامی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

2 استاد، گروه علوم دامی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

3 دانشیار، گروه علوم دامی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

4 استادیار، گروه علوم دامی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

چکیده

هدف از این پژوهش بررسی جایگزینی سیلاژ ذرت با سیلاژ جو بر عملکرد تولیدی گاوهای پرتولید بود. تعداد 36 راس گاو هلشتاین پر تولید (میانگین تولید 9/3 ±3/57 با روزهای شیردهی 7±93) به یکی از سه تیمار آزمایشی شامل تیمار 1- بدون استفاده از سیلاژ جو و 30 درصد سیلاژ ذرت، 2- 10 درصد سیلاژ جو و 20 درصد سیلاژ ذرت و 3- 20 درصد سیلاژ جو و 10 درصد سیلاژ ذرت در طی دو دوره 24 روزه اختصاص داده شدند. نتایج نشان داد که جایگزینی سیلاژ ذرت با سیلاژ جو موجب افزایش خطی شیر تصحیح شده براساس چربی (05/0P≤)، مقدار چربی تولیدی (04/0=P) و بازدهی تولید شیر تصحیح شده به ماده خشک مصرفی (01/0P≤)، همچنین تمایل به افزایش خطی درصد چربی شیر (08/0= P)، و کاهش خطی درصد لاکتوز شیر (05/0=P) گردید. غلظت استات و pH شکمبه‌ای با افزایش سیلاژ جو افزایش و غلظت پروپیونات کاهش یافت (01/0>P). افزایش سیلاژ جو موجب افزایش قابلیت هضم ماده خشک، ماده آلی و فیبر نامحلول در شوینده خنثی به‌صورت خطی (01/0≥P) گردید. این مطالعه نشان داد که جایگزینی بخشی از سیلاژ ذرت با سیلاژ جو می­تواند به‌عنوان راهکاری موفق در جهت بهبود عملکرد، قابلیت هضم، سلامتی و تامین علوفه گاوهای شیری پرتولید مدنظر قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of replacing corn silage with barley silage on performance of high-producing ‎Holstein cows ‎

نویسندگان [English]

  • Abolfazl Soltani 1
  • Mehdi Dehghan banadaky 2
  • Abolfazl Zali 3
  • Farhang Fatehi 4
1 Ph.D. Candidate, Department of Animal Science, College of Agriculture and ‎Natural Resources, University of Tehran, Karaj, Iran
2 Professor, Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
3 Associate Professor, Department of Animal Science, College of Agriculture and Natural Resources, ‎University of Tehran, Karaj, Iran
4 Assistant Professor, Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
چکیده [English]

The objective of this study was to determine the effects of the replacement of corn silage with barley silage on high producing dairy cow performance. Thirty six high-producing (57.3±3.9kg/d) dairy cow in mid-lactation (93±7 DIM) were assigned to one of three experimental treatments including (1) no barley silage (BS) and 30% corn silage (CS), (2) 10% BS and 20% CS, and (3) 20% BS and 10 % CS in the TMR over two 24-day periods. The results showed that replacement of corn silage with barley silage linearly increased fat corrected milk (FCM; P=0.04), fat yield (P=0.04) and fat corrected milk production efficiency (P=0.01). There was also a tendency for linear increase in milk fat percentage (P=0.08), and linear decrease in milk lactose percentage (P=0.05). Ruminal acetate proportion and pH increased with increasing barley silage and propionate proportion decreased. Increasing barley silage resulted in linear increase in dry matter, organic matter and neutral detergent fiber digestibility (NDF; P<0.05). This study showed that replacing corn silage with barley silage could be considered as a successful strategy to improve performance and forage provisions of high-producing dairy cows.

کلیدواژه‌ها [English]

  • Barley silage
  • corn silage
  • forage
  • lactating cow‎
  1. Addah, W., Baah, J., Groenewegen, P., Okine, EK. & McAllister, TA. (2011) Comparison of the fermentation characteristics, aerobic stability and nutritive value of barley and corn silages ensiled with or without a mixed bacterial inoculant. Canadian Journal of Animal Science. 91, 133-146.
  2. Albornoz, R. I. & Allen, M. S. (2018). Highly fermentable starch at different diet starch concentrations ‎decreased feed intake and milk yield of cows in the early postpartum period. Journal of Dairy ‎Science, 101, 8902-8915.‎
  3. Allen, M. S. (1997). Relationship between fermentation acid production in the rumen and the requirement ‎for physically effective fiber. Journal of Dairy Science, 80, 1447-1462.‎
  4. Allen, M. S. (2000). Effects of diet on short-term regulation of feed intake by lactating dairy cattle. Journal ‎of Dairy Science, 83, 1598-1624. ‎
  5. Anonymous. (2012). National Agricultural Statistics Service Quick Stats. http://www.nass.usda.gov.‎
  6. AOAC International. (2002). Official methods of analysis. (17th ed.)AOAC International, Arlington, VA
  7. Beauchemin, K. A. & McGinn, S. M. (2005). Methane emissions from feedlot cattle fed barley or corn ‎diets. Journal of animal science, 83, 653-661.‎
  8. Benchaar, C., Hassanat, F., Gervais, R., Chouinard, P. Y., Petit, H. V. & Massé, D. I. (2014). Methane ‎production, digestion, ruminal fermentation, nitrogen balance, and milk production of cows fed corn ‎silage-or barley silage-based diets. Journal of Dairy Science, 97, 961-974.‎
  9. Cerrato-Sánchez, M., Calsamiglia, S. & Ferret, A. (2008). Effect of the magnitude of the decrease of rumen ‎pH on rumen fermentation in a dual-flow continuous culture system. Journal of Animal Science, 86, ‎‎378-383. ‎
  10. Eastridge, M. L. (2006). Major advances in applied dairy cattle nutrition. Journal of Dairy Science, 89, ‎‎1311-1323.‎
  11. Enemark, J. M. D., Jørgensen, R. J. & Kristensen, N. B. (2004). An evaluation of parameters for the detection ‎of subclinical rumen acidosis in dairy herds. Veterinary Research Communications, 28, 687-709.‎
  12. Fox, D. G., Tedeschi L. O., Tylutki, T. P., Russell, J. B., Van Amburgh, M. E., Chase, L. E., Pell, A. N. & ‎Overton, T. R. (2004). TheCornell Net Carbohydrate and Protein System model for evaluating herd ‎nutrition and nutrient excretion. Animal Feed Science and Technology, 112, 29-78. ‎doi:10.1016/j.anifeedsci.2003.10.006‎
  13. Griinari, J. M., Dwyer, D. A., McGuire, M. A., Bauman, D. E., Palmquist, D. L. & Nurmela, K. V. V. (1998). ‎Trans-octadecenoic acids and milk fat depression in lactating dairy cows. Journal of Dairy Science, 81, ‎‎1251-1261.‎
  14. Hassanat, F., Gervais, R., Julien, C., Massé, D. I., Lettat, A., Chouinard, P. Y., Petit, H.V. & Benchaar, C. ‎‎(2013). Replacing alfalfa silage with corn silage in dairy cow diets: Effects on enteric methane ‎production, ruminal fermentation, digestion, N balance, and milk production. Journal of Dairy Science, ‎‎96, 4553-4567. ‎
  15. Hoover, W. H. (1986). Chemical factors involved in ruminal fiber digestion. Journal of Dairy Science, 69, ‎‎2755-2766. ‎
  16. Kleen, J. L., Hooijer, G. A., Rehage, J. & Noordhuizen, J. P. T. M. (2003). Subacute ruminal acidosis (SARA): ‎a review. Journal of Veterinary Medicine Series A, 50, 406-414. ‎
  17. Lettat, A. & Benchaar, C. (2013). Diet-induced alterations in total and metabolically active microbes within ‎the rumen of dairy cows. PLoS One, 8, e60978.‎
  18. Lopes, F., Cook, D. E. & Combs, D. K. (2015). Effects of varying dietary ratios of corn silage to alfalfa silage ‎on digestion of neutral detergent fiber in lactating dairy cows. Journal of Dairy Science, 98, 6291-6303. ‎
  19. Lund, P., Weisbjerg, M. R. & Hvelplund, T. (2007). Digestible NDF is selectively retained in the rumen of ‎dairy cows compared to indigestible NDF. Animal Feed Science and Technology, 134, 1-17.‎
  20. Manninen, M., Virkajärvi, P. & Jauhiainen, L. (2005). Effect of whole-crop barley and oat silages on the ‎performance of mature suckler cows and their progeny in outdoor winter feeding. Animal Feed Science ‎and Technology, 121, 227-242.‎
  21. Mould, F. L. & Ørskov, E. R. (1983). Manipulation of rumen fluid pH and its influence on cellulolysis in ‎sacco, dry matter degradation and the rumen microflora of sheep offered either hay or concentrate. ‎Animal Feed Science and Technology, 10(1), 1-14.‎
  22. National Research Council (NRC). (2001). Nutrient Requirements of Dairy Cattle. (7th rev ed.). National ‎Academy Press. Washington, DC, USA ‎
  23. Nocek, J. E. (1997). Bovine acidosis: Implications on laminitis. Journal of Dairy Science, 80, 1005-1028.‎
  24. Oetzel, G. R. (2007). Subacute ruminal acidosis in dairy herds: physiology, pathophysiology, milk fat ‎responses, and nutritional management. In: 40th Annual Conference, American Association of Bovine ‎Practitioners, September, Vol. 17, pp. 89-119.‎
  25. Stone, W. C. (2004). Nutritional approaches to minimize subacute ruminal acidosis and laminitis in dairy ‎cattle. Journal of Dairy Science, 87, E13-E26.‎
  26. Tudisco, R., Calabrò, S., Grossi, M., Piccolo, G., Guglielmelli, A., Cutrignelli, M. I., Caiazzo, C. & Infascelli, ‎F. (2010). Influence of replacing corn silage with barley silage in the diets of buffalo cows on milk yield ‎and quality. Veterinary Research Communications, 34, 193-196.‎
  27. Urrutia, N. L. & Harvatine, K. J. (2017). Acetate dose-dependently stimulates milk fat synthesis in lactating ‎dairy cows. The Journal of Nutrition, 147, 763-769.‎
  28. Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, ‎and non starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583-3597.‎
  29. Van Soest, P. J., Robertson, J.B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent ‎fiber, and nonstarch polysaccharide in relation to animal nutrition. Journal of Dairy Science, 74, 3583-‎‎3597.‎
  30. Volden, H. (2011). NorFor-: The Nordic Feed Evaluation System (Vol. 30). Springer Science & Business ‎Media. ‎
  31. Yang, Y., Ferreira, G., Corl, B. A. & Campbell, B. T. (2019). Production performance, nutrient digestibility, ‎and milk fatty acid profile of lactating dairy cows fed corn silage-or sorghum silage-based diets with and ‎without xylanase supplementation. Journal of Dairy Science, 102, 2266-2274.‎