تأثیر اسناد کردن و تراکم نشانگری در بهبود درستی ارزیابی‌های ژنگانی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج

2 دانشیار، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج

3 استادیار، پردیس ابوریحان دانشگاه تهران

چکیده

با دسترسی به اطلاعات نشانگرهای تک نوکلئوتیدی (SNP­)، پیش­بینی شایستگی ژنتیکی افراد بدون اطلاعات پدیدگانی (فنوتیپی) با استفاده از ارزیابی ژنگانی (ژنومی) امکان­پذیر شده است. لیکن، استفاده از تراشه (چیپ)‌های متراکم برای ارزیابی همۀ افراد جمعیت مقرون‌به‌صرفه نیست. برای دستیابی به بیشترین بازدهی در بررسی‌های ژنگانی می­توان گروهی از حیوان‌ها را با تراشه­های با تراکم بالا و دیگر افراد را با تراشه­های کم­تراکم تعیین نژادگان­ (ژنوتیپ) کرد، سپس آن‌ها را به تراکم بالا اسناد (ایمپیوت) کرد. در این بررسی، تأثیر سه تراشۀ کم­تراکم (1k، 2k و 4k)، اسناد‌شده به تراکم بالای 10k و رابطۀ ­خویشاوندی بین جمعیت مرجع و جمعیت­های تأیید بر درستی ارزیابی ژنگانی و نیز همبستگی ارزش­های اصلاحی برآورد­شده در تراشه­های مختلف با استفاده از دادۀ همانند‌سازی­شده، بررسی شد. برای ساختن تراشه­های کم­تراکم، 10، 20 و 40 درصد از نشانگرهای 10k به‌صورت تصادفی انتخاب شدند. اسناد کردن (ایمپیوتیشن) با استفاده از نرم­افزار FImpute صورت گرفت. به‌طورکلی با افزایش تراکم نشانگری، همبستگی بین ارزش­های اصلاحی برآورد­شده به‌دست‌آمده از تراشه­های مختلف افزایش پیدا کرد. به‌گونه‌ای که، درستی ارزیابی ژنگانی تراشۀ کم­تراکم 4k و تراشۀ متراکم 10k همسان بودند. همچنین پس از اسناد کردن نژادگان­های تراشۀ 4k به 10k، تفاوتی بین درستی ارزیابی­های ژنگانی ایجاد نشد. با افزایش فاصلۀ جمعیت مرجع و جمعیت­های تأیید، درستی اسناد کردن کاهش یافت.

کلیدواژه‌ها


عنوان مقاله [English]

Impact of genotype imputation and density of markers on the accuracy of genomic prediction

نویسندگان [English]

  • Nahid Parna 1
  • Ardeshir Nejati Javaremi 2
  • Mostafa Sadeghi 2
  • Rostam Abdollahi Arpanahi 3
1 M. Sc. Student, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
2 Associate Professor, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
3 Assistant Professor, Aboureyhan Campus, University of Tehran, Iran
چکیده [English]

Using SNP markers information and genomic evaluation approach, predicting the genetic merit of individuals without phenotypic records is now possible. However, using high-density panels for genomic evaluation of all individuals is not economically feasible. To achieve high genomic prediction accuracy with reasonable price, it is possible to genotype a proportion of animals with high-density panels and the rest of animals with low-density panels then impute them to high-density genotypes. In this study, the effect of three low-density panels (1k, 2k and 4k), genotype imputation to 10k panel and the relationship between reference and validation populations on the accuracy of genomic predictions and also the correlation between the estimated breeding values using panels with different densities in simulated data were assessed. The low density panels genotypes were actually consisting of 10, 20 and 40 percent of 10k markers selected randomly and FImpute was used for genotype imputation. As a general trend, by increasing the density of markers, the correlation between the estimated breeding values was increased using different panels. So, the accuracy of genomic predictions was similar using 4k and 10k genotypes. Moreover, imputing 4k to 10k genotypes, did not improve the accuracy of genomic prediction. However, the accuracy of estimated breeding values was increased after imputation from 1k or 2k to 10k. The accuracy of imputation was decreased when the reference and validation populations were more distant.

کلیدواژه‌ها [English]

  • Genetic relationship
  • marker
  • simulation
  1. Berry, D. P., McClure, M. C., Waters, S., Weld, R., Flynn, P., Creevey, C. & Mullen, M. P. (2013). Development of a custom genotyping panel for dairy and beef cattle breeding and research. Advances in Animal Biosciences, 4, 249.
  2. Bolormaa, S., Gore, K., Werf, J. H. J., Hayes, B. J. & Daetwyler, H. D. (2015). Design of a low‐density SNP chip for the main Australian sheep breeds and its effect on imputation and genomic prediction accuracy. Animal Genetics, 46(5), 544-556.
  3. Goddard, M. E. & Hayes, B. J. (2007). Genomic selection. Journal of Animal Breeding and Genetics, 124(6), 323-330.
  4. Habier, D., Fernando, R. L. & Dekkers, J. C. (2009). Genomic selection using low-density marker panels. Genetics, 182(1), 343-353.
  5. Harris, B. L., Creagh, F. E., Winkelman, A. M. & Johnson, D. L. (2011). Experiences with the Illumina high density bovine beadchip. Interbull Bulletin, (44).
  6. Hayes, B. J. & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4), 1819-1829.
  7. Judge, M. M., Kearney, J. F., McClure, M. C., Sleator, R. D. & Berry, D. P. (2016). Evaluation of developed low-density genotype panels for imputation to higher density in independent dairy and beef cattle populations. Journal of Animal Science, 94(3), 949-962.
  8. Marchini, J. & Howie, B. (2010). Genotype imputation for genome-wide association studies. Nature Reviews Genetics, 11(7), 499-511.
  9. Meuwissen, T. H., Hayes, B. J. & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4), 1819-1829.
  10. Ogawa, S., Matsuda, H., Taniguchi, Y., Watanabe, T., Takasuga, A., Sugimoto, Y. & Iwaisaki, H. (2016). Accuracy of imputation of single nucleotide polymorphism marker genotypes from low‐density panels in Japanese Black cattle. Journal of Animal Science, 87(1), 3-12.
  11. Sargolzaei, M., Chesnais, J. P. & Schenkel, F. S. (2014). A new approach for efficient genotype imputation using information from relatives. BMC Genomics, 15:478.
  12. Schaeffer, L. R. (2006). Strategy for applying genome‐wide selection in dairy cattle. Journal of Animal Breeding and Genetics, 123(4), 218-223.
  13. Solberg, T. R., Sonesson, A. K. & Woolliams, J. A. (2008). Genomic selection using different marker types and densities. Journal of Animal Science, 86(10), 2447-2454.
  14. Szyda, J., Zukowski, K., Kaminski, S. & Zarnecki, A. (2013). Testing different single nucleotide polymorphism selection strategies for prediction of genomic breeding values in dairy cattle based on low density panels. Czech Journal of Animal Science, 58(3), 136-145.
  15. Technow FR [Package hypred]. (2011). Simulation of Genomic Data in Applied Genetics. University of Hohenheim.
  16. VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. Journal of Dairy Science, 91, 4414-23.
  17. VanRaden, P. M., Van Tassell, C. P., Wiggans, G. R., Sonstegard, T. S., Schnabel, R. D., Taylor, J. F. & Schenkel, F. S. (2009). Invited review: Reliability of genomic predictions for North American Holstein bulls. Journal of Dairy Science, 92, 16-24.
  18. Wiggans, G. R., VanRaden, P. M. & Cooper, T. A. (2011). The genomic evaluation system in the United States: Past, present, future. Journal of Dairy Science, 94(6), 3202-3211.