8954856055505db

تأثیر افزودن منابع مختلف اسیدهای چرب بر فراسنجه‌های تخمیر و جمعیت میکروبی شکمبه در شرایط برون‌تنی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار گروه علوم دامی، دانشکده کشاورزی، دانشگاه ارومیه

2 دانشیار گروه عوم دامی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران

3 استادیار گروه علوم و فناوری سیلیکون، پژوهشکده توسعه فرایندهای شیمیایی، پژوهشگاه شیمی و مهندسی شیمی ایران

چکیده

هدف از انجام این آزمایش بررسی تأثیر افزودن الگوهای مختلف اسیدهای چرب بر گوارش‌پذیری شکمبه‌ای مواد مغذی، برخی فراسنجه­های شکمبه­ای و جمعیت میکروبی شکمبه بر پایۀ استفاده از روش­های مولکولی در شرایط برون­تنی بود. به این منظور، روغن­های مختلف به‌عنوان منابع اولئیک، لینولئیک، لینولنیک، دکوزاهگزانوئیک و ایکوزاپنتانوئیک استفاده شد. برای تأمین اسید پالمتیک از یک مکمل تجاری (برگافت تی-300) حاوی درصد بالایی از اسید پالمتیک به‌صورت گلیسریدی استفاده شد. نتایج این بررسی نشان‌دهندۀ کاهش ضریب‌های گوارش‌پذیری و کاهش جمعیت شکمبه‌ای باکتری‌های سلولولایتیک، قارچ‌های بی‌هوازی و پروتوزوآ درنتیجۀ افزودن منابع اسیدهای چرب غیراشباع بود (05/0˂P). روغن ماهی هم‌زمان با کاهش باکتری‌های سلولولایتیک سبب افزایش جمعیت باکتری‌های پروتئولتیک و آمیلولتیک شد (05/0˂P). روغن نخل (پالم) باوجود کاهش برخی از باکتری‌های سلولولایتیک تأثیری بر ضریب‌های گوارش‌پذیری دیوارۀ یاخته‌ای، مقدار و الگوی اسیدهای چرب فرار تولیدی نداشت (05/0P>). همۀ منابع روغنی مورداستفاده به‌استثنای روغن نخل سبب کاهش معنی­دار متانوژن­ها نسبت به گروه شاهد شدند، درحالی‌که افزودن روغن نخل، سبب افزایش متانوژن­ها شد (05/0˂P). منابع اسیدهای چرب غیراشباع ازجمله روغن ماهی سبب کاهش جمعیت باکتری‌های مسئول در مراحل مختلف هیدروژنه کردن زیستی (بیوهیدروژناسیون) شدند (05/0˂P). افزودن منابع مختلف اسیدهای چرب غیراشباع سبب کاهش غلظت کل اسیدهای چرب فرار و اسید استیک شد. بیشترین میزان کاهش در غلظت اسیدهای چرب غیراشباع نسبت به گروه شاهد مربوط به روغن ماهی بود (9/103 در برابر0/74 میلی­مول در لیتر به ترتیب برای گروه شاهد و روغن ماهی).

کلیدواژه‌ها


عنوان مقاله [English]

Effects of different fatty acid supplements on rumen fermentation parameters and microbial population in vitro condition

نویسندگان [English]

  • Hamed Khalilvandi-Behroozyar 1
  • Mehdi Dehghan-Banadaky 2
  • Mohammad Ghaffarzadeh 3
  • Kamran Rezayazdi 2
1 Assistant professor, Animal science department, Urmia University
چکیده [English]

The aim of this study was to determine effects of different fatty acid profiles on rumen digestion coefficients, some of rumen metabolism parameters and rumen microbial populations. Different oils were used as source of fatty acids such as, Oleic, Linoleic, Linolenic, DHA and EPA. Palmitic acid supplemented from a commercial product (BergaFat T-300) containing high Palmitic acid percentage. Results showed that supplementation of unsaturated fatty acids led to reduction in nutrient digestibility and rumen population of protozoa, anaerobic fungi and cellulolytic bacteria (P˂0.05). Fish oil resulted in higher population of proteolytic and amilolytic bacteria in expense of cellulolytic and major biohydrogenating population (P˂0.05). Palmitic acid source reduced population of two of major cellulolytic bacteria, but there were no effects on cell wall digestibility, total and profile of rumen VFA (P>0.05). All of the oil supplements except for Palmitic acid supplement reduced methanogeinic archaea (P˂0.05). Unsaturated fatty acid sources including fish oil greatly reduced rumen biohydrogenating bacteria population (P˂0.05). Rumen total VFA and acetate concentration but not propionate decrease as PUFA sources supplemented. Fish oil resulted in greatest reduction in VFA concentration compared with control (103.9 vs. 74.0 mM/L, respectively).

کلیدواژه‌ها [English]

  • fish oil
  • palm oil
  • PUFA
  • RT-qPCR
  • VFA
  1. AbuGhazaleh, A.A. & Jenkins, T.C. (2004). Short communication: Docosahexaenoic acid promotes vaccenic acid accumulation in mixed ruminal cultures when incubated with linoleic acid. Journal of Dairy Science, 87, 1047-1050.
  2. Broderick, G.A. & Kang, J. H. (1980). Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science, 63, 64-75.
  3. Chalupa, W., Rickabaugh, B., Kronfeld, D. & Sklan, S. D. (1984). Rumen fermentation in vitro as influenced by long chain fatty acids. Journal of Dairy Science, 67, 1439-1444.
  4. Chen, J. & Weimer, W. (2001). Competition among three predominant ruminal cellulolytic bacteria in the absence or presence of non-cellulolytic bacteria. Microbiology, 147, 21-30.
  5. Chilliard, Y., Glasser, F., Ferlay, A., Bernard, L., Rouel, J. & Doreau, M. (2007). Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. European Journal of Lipid Science and Technology, 109, 828-855.
  6. Dehority, B. A. (2003). Rumen Microbiology. Nottingham University Press, Nottingham, UK.
  7. Denman, S. E. & McSweeney C. S. (2006). Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiology Ecology, 58, 572-582.
  8. Doreau, M. & Chilliard, Y. (1997). Effects of ruminal or postruminal fish oil supplementation on intake and digestion in dairy cows. Reproduction Nutrition Development, 37, 113-124.
  9. Doreau, M. & Ferlay, A. (1995). Effect of dietary lipids on nitrogen metabolism in the rumen: a review, Livestock Production Science, 43, 97-110.
  10. FASS. (2010). Guide for the Care and Use of Agricultural Animals in Agricultural Research and Teaching. 3rd rev. ed. Federation of Animal Sciences Societies Savoy, IL.
  11. Fievez, V., Dohme, F., Danneels, M., Raes, K. & Demeyer, D. (2003). Fish oils as potent rumen methane inhibitors and associated effects on rumen fermentation in vitro and in vivo. Animal Feed Science and Technology, 104, 41-58.
  12. Goel, G., Makkar, H.P.S. & Becker, K. (2008). Changes in microbial community structure, methanogenesis and rumen fermentation in response to saponin-rich fractions from different plant materials. Journal of Applied Microbiology, 105, 770-777.
  13. Grummer, R. R. (1988). Influence of prilled fat and calcium salt of palm oil fatty acids on ruminal fermentation and nutrient digestibility. Journal of Dairy Science, 71, 117-123.
  14. Henderson, C. (1973). The effects of fatty acids on pure cultures of rumen bacteria. Journal of Agricultural Science, 81, 107-112.
  15. Hristov, A. N., Ivan, M. & McAllister, T. A. (2004). In vitro effects of individual fatty acids on protozoal numbers and on fermentation products in ruminal fluid from cattle fed a high-concentrate, barley-based diet. Journal of Animal Science, 82, 2693-2704.
  16. Hristov, A.N., Ivan, M., Neill, L. & McAllister, T.A. (2003). Evaluation of several potential bioactive agents for reducing protozoal activity in vitro. Animal Feed Science and Technology, 105, 163-184.
  17. Hristov, A. N., Grandeen, K. L., Ropp, J. K. & McGuire, M. A. (2004). Effect of sodium laurate on ruminal fermentation and utilization of ruminal ammonia nitrogen for milk protein synthesis in dairy cows. Journal of Dairy Science, 87, 1820-1831.
  18. Huws, S.A., Lee, M.R.F., Muetzel, S.M., Scott, M.B., Wallace, R.J. & Scollan, N.D. (2010). Forage type and fish oil cause shifts in rumen bacterial diversity. FEMS Microbiology Ecology, 73, 396-407.
  19. Ichihara, K. & Fukubayashi, Y. (2010). Preparation of fatty acid methyl esters for gas-liquid chromatography. Journal of Lipid Research, 51, 635-640.
  20. Jenkins, T. C. & Palmquist, D. L. (1984). Effect of fatty acids or calcium soaps on rumen and total nutrient digestibility of dairy rations. Journal of Dairy Science, 67, 978-986.
  21. Jenkins, T.C., Wallace, R.J., Moate, P.J. & Mosley, E.E. (2008). Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. Journal of Animal Science, 86, 397-412.
  22. Kudo, H., Cheng, K.J. & Costerton, J.W. (1987). Interactions between Treponema bryantii and cellulolytic bacteria in the in vitro digestion of straw cellulose. Canadian Journal of Microbiology, 33, 241-248.
  23. Lee, M.R.F., Tweed, J.K.S., Moloney, A.P. & Scollan, N.D. (2005). The effects of fish oil supplementation on rumen metabolism and the biohydrogenation of unsaturated fatty acids in beef steers given diets containing sunflower oil. Journal of Animal Science, 80, 361-367.
  24. Maczulak, A.E., Dehority, B.A. & Palmquist, D.L. (1981). Effects of long-chain fatty acids on growth of rumen bacteria. Applied and Environmental Microbiology, 42, 856-862.
  25. Maia, M.R.G., Chaudhary, L.C., Bestwick, C.S., Richardson, A.J., McKain, N., Larson, T.R., Graham, I.A. & Wallace, R.J. (2010). Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens. BMC Microbiology, 10, 52-62.
  26. Maia, M.R.G., Chaudhary, L.C., Figueres, L. & Wallace, R.J. (2007). Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie van Leeuwenhoek, 91, 303-314.
  27. McDougall, E. I. (1948). Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochemistry Journal, 43, 99-109.
  28. Oldick, B.S. & Firkins, J.L. (2000). Effects of degree of fat saturation on fiber digestion and microbial protein synthesis when diets are fed twelve times daily. Journal of Animal Science, 78, 2412-2420.
  29. Ottenstein, D.M. & Batler, D.A. (1971). Improved gas chromatography separation of free acids C2-C5 in dilute solution. Analytical Chemistry, 43, 952-955.
  30. Potu, R. B., AbuGhazaleh, A. A., Hastings, D., Jones, K. & Ibrahim, S. A. (2011). The effect of lipid supplements on ruminal bacteria in continuous culture fermenters varies with the fatty acid composition. Journal of Microbiology, 49, 216-223.
  31. Reynolds, C. K., Aikman, P. C., Lupoli, B., Humphries, D. J. & Beever, D. E. (2003). Splanchnic metabolism of dairy cows during the transition from late gestation through early lactation. Journal of Dairy Science, 86, 1201-1217.
  32. Santos, J. E. P., Bilby, T. R., Thatcher, W. W., Staples, C. R. & Silvestre, F. T. (2008). Long chain fatty acids of diet as factors influencing reproduction in cattle. Reproduction in Domestic Animals, 43, 23-30.
  33. Shingfield, K. J., Kairenius, P., Arölä, A., Paillard, D., Muetzel, S., Ahvenjärvi, S., Vanhatalo, A., Huhtanen, P., Toivonen, V., Griinari, J.M. & Wallace, R. J. (2012). Dietary fish oil supplements modify ruminal biohydrogenation, alter the flow of fatty acids at the omasum, and induce changes in the ruminal Butyrivibrio population in lactating cows. Journal of Nutrition, 142, 1437-1448.
  34. Tajima, K., Aminov, R. I., Nagamine, T., Matsui, H., Nakamura, M. & Benno, Y. (2001). Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Applied and Environmental Microbiology, 67, 2766-2774.
  35. Tamminga, S. & Doreau, M. (1991). Lipids and rumen digestion. 151–160. In: Jouany J. P. (ed.): Rumen Microbial Metabolism and Ruminant Digestion. INRA, Paris.
  36. Toral, P.G., Shingfield, K.J., Hervás, G., Toivonen, V. & Frutos, P. (2010). Effect of fish oil and sunflower oil on rumen fermentation characteristics and fatty acid composition of digesta in ewes fed a high concentrate diet. Journal of Dairy Science, 93, 4804-4817.
  37. Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods of dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583-3597.
  38. VanNevel, C.J. & Demeyer, D.I. (1996). Effect of pH on biohydrogenation of polyunsaturated fatty acids and their Ca-salts by rumen microorganisms in vitro. Archives of Animal Nutrition, 49, 151-157.
  39. Veira, D.M., Ivan, M. & Jui, P.Y. (1983). Rumen ciliate protozoa: effects on digestion in the stomach of sheep. Journal of Dairy Science, 66, 1015-1022.
  40. Vlaeminck, B., Mengistu, G., Fievez, V., Jonge, L.d. & Dijkstra, J. (2008). Effect of in Vvtro docosahexaenoic acid supplementation to marine algae-adapted and unadapted rumen inoculum on the biohydrogenation of unsaturated fatty acids in freeze-dried grass. Journal of Dairy Science, 91, 1122-1132.
  41. Wachira, A. M., Sinclair, L. A., Wilkinson, R. G., Hallett, K., Enser, M. & Wood, J. D. (2000). Rumen biohydrogenation of n-3 polyunsaturated fatty acids and their effects on microbial efficiency and nutrient digestibility in sheep. Journal of Agricultural Science, Cambridge, 135, 419-428.
  42. Yang, S.L., Bu, D.P., Wang, J.Q., Hu, Z.Y., Li, D., Wei, H.Y., Zhou, L.Y. & Loor, J.J. (2009). Soybean oil and linseed oil supplementation affect profiles of ruminal microorganisms in dairy cows. Animal, 3, 1562-1569.