اثر تغذیه پپتید زیست فعال تخم پنبه و سلنیوم آلی در دوره پیش از زایش بر سلامت دستگاه تولید مثلی و آبستنی بعدی در گاوهای شیری نژاد هلشتاین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه زنجان، زنجان. ایران.

2 گروه علوم دامی،دانشکده کشاورزی، دانشگاه زنجان،زنجان، ایران

3 مرکز تحقیقات کشاورزی و منابع طبیعی چهار محال و بختیاری، تحقیقات علوم دامی، ایران

چکیده

هدف از انجام این آزمایش، بررسی اثر تغذیه سرک هیدروکسی سلنو متیونین[1] (HSM) به عنوان سلنیوم آلی و پپتید زیست فعال حاصل از تخم پنبه[2] (CSBP) بر امتیاز وضعیت بدنی[3]، سلامت دستگاه تولید مثلی و آبستنی بعدی گاوهای شیری بود. به این منظور صد و هشتاد راس گاو هلشتاین چند بار زایش کرده 21 روز پیش از تاریخ زایش در قالب طرح بلوک کامل تصادفی در آرایش فاکتوریل 2×2 (دو سطح سلنیوم آلی و دو سطح پپتید زیست فعال) به یکی از 4 تیمار آزمایشی شامل تیمار 1) جیره پایه (حاوی سلنیوم معدنی توصیه شده در NRC (2001) و بدون CSBP؛ تیمار2) جیره پایه + 300 گرم CSBP؛ تیمار 3) جیره پایه + 2/1 میلی‌گرم HSM در هر کیلوگرم ماده خشک و بدون افزودن CSBP؛ تیمار 4) جیره پایه + 2/1 میلی‌گرم HSM در هر کیلوگرم ماده خشک +300 گرم CSBP اختصاص یافتند. BCS در دوره پس از زایش در تیمارهایی که HSM دریافت نمودند بالاتر بود (01/0 > P) و تغییرات BCS کمتر از سایر گروه­ها در دوره پیش از زایش بود (01/0 > P). هم­چنین اثر متقابل HSM در CSBP در دوره پس از زایش بر BCS  (02/0 > P)  و تغییرات BCS معنی­دار بود (01/0 > P). کیست تخمدان، تعداد تلقیح به ازای آبستنی، امتیاز اندومتر و رجعت رحمی و آبستنی در تلقیح اول تحت تاثیر هیچ کدام از تیمارهای آزمایشی قرار نگرفت (1/0< P). اما HSM توانست اثر مثبتی بر آبستنی در تلقیح دوم داشته باشد (05/0 > P). می­توان نتیجه گرفت که افزودن HSM منجر به کاهش تغییرات BCS در دوره پیش و پس از زایش شده و به دنبال آن سبب بهبود آبستنی در تلقیح دوم می­شود..
 
[1].  Hydroxy Seleno Methionine (HSM)
[2]. Cotton Seed Bioactive Peptide (CSBP)
[3]. Body Condition Score (BCS)

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Feeding Top-Dress Cottonseed Bioactive Peptide and Organic Selenium in the Prepartum on the Health of the Reproductive Tract and Subsequent Pregnancy in Holstein Dairy Cattle

نویسندگان [English]

  • Zeinab Mirbagheri Marvili 1
  • Hamid Amanlou 2
  • Najme Eslamian Farsuni 3
1 Department of Animal Science, Agriculture Faculty, University of Zanjan., Zanjan. Iran.
2 Department of animal science, Faculty of agriculture, University of Zanjan, Zanjan, Iran
3 Agriculture and natural resources research and education center of Chahar Mahal and Bakhtiari province, Animal science research, Iran
چکیده [English]

The aim of this study was to investigate the effect of feeding top dress Hydroxy Seleno Methionine (HSM) as organic Selenium and cotton seed bioactive peptide (CSBP) on body condition, health of the reproductive system and subsequent pregnancy of dairy cows. For this purpose, one hundred and eighty multiparous Holstein cows at the day 21 prior to the expected calving date were assigned to one of four experimental treatments in a randomized complete block design in a 2x2 factorial arrangement: 1) Basal diet (containing mineral selenium as per NRC (2001) recommendations without peptide; 2) Basal diet plus 300 g bioactive peptide; 3) Basal diet plus 1.2 mg organic selenium per kg of dry matter without bioactive peptides; 4) Basal diet plus 1.2 mg organic selenium per kg of dry matter plus 300 grams of bioactive peptide. The inclusion of HSM during the prepartum period resulted in a higher BCS in postpartum and smaller increase in BCS during prepartumd (P < 0.01). Additionally, there was a significant interaction effect between HSM and CSBP on BCS (P < 0.02) and its changes (P < 0.01) during the post-partum periods. The presence of ovarian cysts, number of inseminations per pregnancy, the endometrium and uterine regression scores and pregnancy during the first insemination was not influenced by any of the experimental treatments (P > 0.1). However, HSM had a positive effect on pregnancy during the second insemination (P < 0.05). It can be concluded that supplementing HSM could reduce the BCS changes before and after parturition and  subsequent to that, it leads to an enhancement in the pregnancy during the second insemination.

کلیدواژه‌ها [English]

  • Bioactive Peptide
  • Endometrium
  • Ovaries
  • Pregnancy
  • Reproductive tract
  • Selenium

Extended Abstract

Introduction

Most high-yielding cows experience a notable energy deficit and undergo significant metabolic changes during calving and early lactation. These changes primarily affect lipid and protein metabolism. The increase in metabolism, particularly lipid metabolism, is accompanied by the restoration of energy balance and a rise in oxygen consumption. Consequently, there is an increase in the production of reactive oxygen species (ROS), primarily because most tissues rely on fatty acids released from fat as their primary energy source.

Inflammation not only reduces nutrient intake but also increases body weight loss and alters nutrient partitioning. This energy cost sequesters resources from other physiological processes, including production, reproduction, and perhaps even the immune system itself, which in turn has known consequences for reproduction. Among these problems, we can mention inappropriate reproductive performance (including low conception, retained placenta, metritis, and cystic ovaries). Inflammatory mediators can also reach the reproductive tract, including the ovaries and uterus, as well as the brain, affecting the physiological processes that control normal reproductive cycles and leading to decreased LH secretion.

 

Material and Methods

In a study involving one hundred and eighty multiparous Holstein cows 21 days prior to the expected calving date, a randomized complete block design was implemented in a 2x2 factorial arrangement. The cows were assigned to one of four experimental treatments: 1) Basal diet (containing mineral selenium as per NRC (2001) recommendations without peptide; 2) Basal diet (containing mineral selenium as per NRC (2001) recommendations plus 300 g bioactive peptide; 3) Basal diet (containing mineral selenium as per NRC (2001) recommendations plus 1.2 mg organic selenium per kg of dry matter without bioactive peptides; 4) Basal diet (containing mineral selenium as per NRC (2001) recommendations plus 1.2 mg organic selenium per kg of dry matter plus 300 grams of bioactive peptide.

 

Results and discussion

The addition of CSBP did not have any significant impact on BCS changes during the pre- and post-partum period (P > 0.1). However, the inclusion of HSM during the prepartum period resulted in a higher BCS in postpartum and smaller increase in BCS during prepartum (P < 0.01). Additionally, there was a significant interaction effect between HSM and CSBP on BCS (P < 0.02) and its changes (P < 0.01) during the post-partum periods. The presence of ovarian cysts was not influenced by any of the experimental treatments (P > 0.1). The number of inseminations per pregnancy was also not affected by the experimental treatments (P > 0.1). However, the treatments that received HSM had a lower number of inseminations per pregnancy (2.11 services versus 2.35 services). Furthermore, the endometrium and uterine regression scores in the 38-day ultrasound were not impacted by the experimental treatments (P > 0.1). Nevertheless, the treatments that received HSM had lower endometrial and uterine regression scores. The effect of the experimental treatments on pregnancy during the first insemination was not influenced by the experimental treatments (P > 0.1). However, HSM may have a positive effect on pregnancy during the second insemination (P < 0.05).

 

Conclusions

    In the present study, the interaction effect of peptide in selenium on BCS after parturition was significant and it was able to minimize BCS changes after birth. Also, the effect of HSM on BCS changes before calving was significant, and therefore, after calving, cows that received HSM had higher BCS than other treatments. However, the interaction between peptide and selenium had no significant effect on endometrial score, uterine regression, ovarian cyst, and number of inseminations in each pregnancy. The effect of peptide and selenium and their mutual effect on the pregnancy of the first and second insemination was not significant, but selenium had a significant effect on the pregnancy of the second insemination.

Aardema H, Lolicato F, van de Lest CH, Brouwers JF, Vaandrager AB, van Tol HT, Roelen BA, Vos PL, Helms JB, Gadella BM. (2013). Bovine cumulus cells protect maturing oocytes from increased fatty acid levels by massive intracellular lipid storage. Biol Reprod 2013; 88: 164.
Aardema H, Vos PL, Lolicato F, Roelen BA, Knijn HM, Vaandrager AB, Helms JB, Gadella BM. (2011). Oleic acid revpents detrimental effects of saturated fatty acids on bovine oocyte developmental competence. Biol Reprod 2011; 85: 62–69.
Abuelo, A. (2020). Symposium review: Late-gestation maternal factors affecting the health and development of dairy calves. Journal of Dairy Science, 103(4),3882-3893. doi: https://doi.org/10.3168/jds.2019-17278.
Adela P., Zinveliu D., Pop RA., Andrei S., Kiss E. (2006). Antioxidant status in dairy cows during lactation. Bull USAMV-CN 63:130–135
Agenas, S., E. Burstedt, and K. Holtenius. (2003). Effects of feeding intensity during the dry period. 1. Feed intake, body weight, and milk production. J. Dairy Sci. 86:870–882.
Ankowiak D, Kruglak M, Dzieńska M (2006) Changes in total lipid concentration and the selected fractions in the blood plasma of pregnant goats. Folia Univ Agric Stein Zootechnica 48:175–186
Akbar H., Grala T. M., Vailati Riboni M., Cardoso F. C., Verkerk G., McGowan J., Macdonald K., Webster J., Schutz K., Meier S., Matthews L., Roche, J. R., and Loor J. J., (2015). Body condition score at calving affects systemic and hepatic transcriptome indicators of inflammation and nutrient metabolism in grazing dairy cows, J. Dairy Sci. 98 :1019–1032
Arbel, R., Bigun, Y., Ezra, E., Sturman, H., and Hojman, D. (2001). The effect of extended calving intervals in high-yielding lactating cows on milk production and profitability. Journal of Dairy Science, 84(3), 600-608.
Barletta, R. V., M. Maturana Filho, P. D. Carvalho, T. A. Del Valle, A. S. Netto, F. P. Rennó, R. D. Mingoti, J. R. Gandra, G. B. Mourão, P. M. Fricke, R. Sartori, E. H. Madureira, and M. C. Wiltbank. (2017). Association of changes among body condition score during the transition period with NEFA and BHBA concentrations, milk production, fertility, and health of Holstein cows. Theriogenology 104:30–36. https: / / doi .org/ 10 .1016/ J. theriogenology .2017 .07 .030.
Barbosa, J. R., & de Carvalho Junior, R., N. (2021). Polysaccharides obtained from natural edible sources and their role in modulating the immune system: Biologically active potential that can be exploited against COVID-19. Trends in Food Science & Technology, 108,223-235. doi: https://doi.org/10.1016/j.tifs.2020.12.026.
Basirico, L.; Morera, P.; Dipasquale, D.; Troscher, A.; Serra, A.; Mele, M.; Bernabucci, U. (2015). Conjugated linoleic acid isomers strongly improve the redox status of bovine mammary epithelial cells (BME-UV1). J. Dairy Sci. 2015, 98, 7071–7082.
Bell, A.W., (1995). Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. Journal of Animal Science 73, 2804–2819.
Bernabucci U, Ronchi B, Lacetera N, Nardone A (2005) Influence of body condition on relationships between metabolic status and oxidative stress in periparturient dairy cows. J Dairy Sci 88:2017–2026
Bertevello PS, Teixeira-Gomes AP, Seyer A, Vitorino Carvalho A, Labas V, Blache MC, Banliat C, Cordeiro LAV, Duranthon V, Papillier P, Maillard V, Elis S, Uzbekova S. (2018). Lipid identification and transcriptional analysis of controlling enzymes in bovine ovarian follicle. Int J Mol Sci 2018; 19: 19.
Bouwstra, R.J.; Nielen, M.; Newbold, J.R.; Jansen, E.H.; Jelinek, H.F.; van Werven, T. (2010). Vitamin E supplementation during the dry period in dairy cattle. Part II: Oxidative stress following vitamin E supplementation may increase clinical mastitis incidence postpartum. J. Dairy Sci. 2010, 93, 5696–5706.
Bouwstra, R.J.; Nielen, M.; Stegeman, J.A.; Dobbelaar, P.; Newbold, J.R.; Jansen, E.H.; van Werven, T. (2010).  Vitamin E supplementation during the dry period in dairy cattle. Part I: Adverse effect on incidence of mastitis postpartum in a double-blind randomized field trial. J. Dairy Sci. 2010, 93, 5684–5695.
Brindha, P. (2016). Role of phytochemicals as immunomodulatory agents: A review. International Journal of Green Pharmacy, 10(1), doi: https://doi.org/10.22377/ijgp.v10i1.600
Britt JH. (1992) Impact of early postpartum metabolism on follicular development and fertility. The Bovine Proceedings 1992; 24: 39–43.
Bromfield, J. J., J. E. P. Santos, J. Block, R. S. Williams, and I. M. Sheldon. (2015). Physiology and endocrinology symposium: Uterine infection: Linking infection and innate immunity with infertility in the high-producing dairy cow. J. Anim. Sci. 93:2021–2033.
Burvenich, C., V. Van Merris, J. Mehrzad, A. Diez-Fraile, and L. Duchateau. (2003). Severity of E. coli mastitis is mainly determined by cow factors. Vet. Res. 34:521–564.
Butler, W.R. (2003) Energy balance relationships with follicular development, ovulation and fertility in postpartum dairy cows. Livest. Prod. Sci.83: 211-218.
Cantwell, H.; Devery, R.; M, O.S.; Stanton, C. The effect of conjugated linoleic acid on the antioxidant enzyme defense system in rat hepatocytes. Lipids 1999, 34, 833–839.
Carvalho, P. D., A. H. Souza, M. C. Amundson, K. S. Hackbart, M. J. Fuenzalida, M. M. Herlihy, H. Ayres, A. R. Dresch, L. M. Vieira, J. N. Guenther, R. R. Grummer, P. M. Fricke, R. D. Shaver, and M. C. Wiltbank. (2014). Relationships between fertility and postpartum changes in body condition and body weight in lactating dairy cows. J. Dairy Sci. 97:3666–3683. https: / / doi .org/ 10 .3168/ jds .2013 -7809.
Chebel, R. C., L. G. D. Mendonca, and P. S. Baruselli. (2018). Association between body condition score change during the dry period and postpartum health and performance. J. Dairy Sci. 101:4595–4614. https: / / doi .org/ 10 .3168/ jds .2017 -13732.
Ceko, M. J., Hummitzsch, K., Hatzirodos, N., Bonner, W. M., Aitken, J. B., Russell, D. L., Lane, M., Rodgers, R. J., & Harris, H. H. (2015). X-ray fluorescence imaging and other analyses identify selenium and GPX1 as important in female reproductive function. Metallomics, 7,66–77. 
Chebel, R. C., (2021). Predicting the risk of retained fetal membranes and metritis in dairy cows according to prepartum hemogram and immune and metabolic status. Preventive Veterinary Medicine, 187,105204. doi: https://doi.org/10.1016/j.prevetmed.2020.105204.
Colditz, I. G. (2002). Effects of the immune system on metabolism: Implication for production and disease resistance in livestock. Livest. Prod. Sci. 75:257–268.
Danfær A., Tetens V. and Agergaard N. (1995). Review and an experimental study on the physiological and quantitative aspects of gluconeogenesis in lactating ruminants. Comparative Biochemistry and Physiology-Part B: Biochemistry and Molecular Biology 111, 201–210.
Drackley, J. K., H. M. Dann, G. N. Douglas, N. A. J. Guretzky, N. B. Litherland, J. P. Underwood, and J. J. Loor. (2005). Physiological and pathological adaptations in dairy cows that may increase susceptibility to periparturient diseases and disorders. Ital. J. Anim. Sci. 4:323–344.
Erisir, M; Akar, Y; Gurgoze, SY and Yuksel, M (2006). Changes in plasma malondialdehyde concentration and some erythrocyte antioxidant enzymes in cows with prolapsus uteri, caesarean section, and retained placenta. Revue de Med. Vet., 157: 80-83.
Ferguson, J. D., D. T. Galligan, and N. Thomsen. (1994). Principal descriptors of body condition score in Holstein cows. J. Dairy Sci. 77:2695–2703. https: // doi .org/ 10 .3168/ jds. S0022 -0302(94)77212 -X.
Fordyce F. (2007). Selenium geochemistry and health. AMBIO: A Journal of the Human Environment, 36(1), 94–97.
Frank LA, Sutton-McDowall ML, Russell DL, Wang X, Feil DK, Gilchrist RB, Thompson JG. (2013) Effect of varying glucose and glucosamine concentration in vitro on mouse oocyte maturation and developmental competence. Reprod Fertil Dev 2013; 25: 1095–1104.
Fricke P.M., Wiltbank M.C., and Pursley j.R. (2022). Mini-Review: The high fertility cycle. JDS Communications,2022; 3 https: / / doi .org/ 10 .3168/ jdsc .2022 -0280
Gao, D., Cao, Y., & Li, H. (2010). Antioxidant activity of peptide fractions derived from cottonseed protein hydrolysate. Journal Science Food Agriculture, 90(11),1855-1860, doi: https://doi.org/10.1002/jsfa.4024
Garnsworthy, P. C., K. D. Sinclair, and R. Webb. (2008). Integration of physiological mechanisms that influence fertility in dairy cows. Animal 2:1144–1152.
Gifford, C. A., Holland B. P., Mills R. L., Maxwell C. L., Farney J. K., Terrill S. J., D. L. Step, C. J. Richards, L. O. Burciaga-Robles, and C. R. Krehbiel. (2012). Growth and development symposium: Impacts of inflammation on cattle growth and carcass merit. J.Anim. Sci. 90:1438–1451.
Goff, J. P. (2006). Major advances in our understanding of nutritional influences on bovine health. J. Dairy Sci. 89:1292–1301
Gong, J. G., W. J. Lee, P. C. Garnsworthy, and R. Webb. (2002). Effect of dietary-induced increases in circulating insulin concentrations during the early postpartum period on reproductive function in dairy cows. Reproduction 123:419–427.
Gutierrez, C. G., J. G. Gong, T. A. Bramley, and R. Webb. (20060. Selection on predicted breeding value for milk production delays ovulation independently of changes in follicular development, milk production and body weight. Anim. Reprod. Sci. 95:193– 205.
Hall J., Bobe G., Nixon B., Vorachek W., Nichols T., Mosher W. and Pirelli G. (2014). Effect of transport on blood selenium and glutathione status in feeder lambs. J. Anim. Sci. 92, 4115- 4122
Haney, E. F., and Hancock, R. E. (2013). Peptide design for antimicrobial and immunomodulatory applications. Biopolymers, 100(6),572-583. doi: https://doi.org/10.1002/bip.22250.
Haug A., Graham R. D., Christophersen O. A. and Lyons G. H. (2007). How to use the world’s scarce selenium resources efficiently to increase the selenium concentration in food. Microbial Ecology in Health and Disease, 19(4), 209–228.
Hayirli, A., R. R. Grummer, E. V. Nordheim, and P. M. Crump. (2002). Animal and dietary factors affecting feed intake during the prefresh transition period in Holsteins. J. Dairy Sci. 85:3430–3443.
He, L. X., Ren, J. W., Liu, R., Chen, Q. H., Zhao, J., Wu, X., … & Li, Y. (2017). Ginseng (Panax ginseng Meyer) oligopeptides regulate innate and adaptive immune responses in mice via increased macrophage phagocytosis capacity, NK cell activity and Th cells secretion. Food Function, 8(10),3523-3532. doi: https://doi.org/10.1039/c7fo00957g.
Hefnawy AEG and Tórtora-Pérez JL. (2010). The importance of selenium and the effects of its deficiency in animal health. Small Rumin Res. 2010;89(2-3):185–92. https://doi.org/10.1016/j.smallrumres.2009.12.042.
Hernandez, J. A., C. A. Risco, F. S. Lima, and J. E. P. Santos. (2012). Observed and expected combined effects of clinical mastitis and low body condition on pregnancy loss in dairy cows. Theriogenology 77:115–121. https: / / doi.org/ 10 .1016/ j. theriogenology .2011 .07.023.
Hidiroglou M., Heaney D.P. and Jenkins K.J. (1968). Metabolism of inorganic selenium in rumen bacteria. Canadian Journal of Physiology and Pharmacology, 46, 229–232.
Holdorf, H. T., Brown, W. E., Combs, G. J., Henisz, S. J., Kendall, S. J., Caputo, M. J., Ruh, K. E., & White, H. M. (2023). Increasing the prepartum dose of rumen-protected choline: Effects of maternal choline supplementation on growth, feed efficiency, and metabolism in Holstein and Holstein x Angus calves. Journal of Dairy Science 106(9),6005-6027. doi: https://doi.org/10.3168/jds.2022-23068.
Immler, M., K. Buttner, T., Gartner, A., Wehrend, & Donat, K. (2022). Maternal Impact on Serum Immunoglobulin and Total Protein Concentration in Dairy Calves. Animals 12(6),755. doi: https://doi.org/10.3390/ani12060755.
Ingvartsen KL, Dewhurst RJ, Friggens NC. (2003). On the relationship between lactational performance and health: is it yield or metabolic imbalance that causes diseases in dairy cattle? A position paper. Livestock Prod. Sci. 2003; 83:277±308.
Inchaisri, C., Jorritsma, R., Vos, P. L., van der Weijden, G. C., and Hogeveen, H. (2010). Economic consequences of reproductive performance in dairy cattle. Theriogenology, 74(5), 835-846.
Inchaisri, C., Jorritsma, R., Vos, P. L., van der Weijden, G. C., and Hogeveen, H. (2011). Analysis of the economically optimal voluntary waiting period for first insemination. Journal of Dairy Science, 94(8), 3811-3823.
 Jeong WJ, Cho SJ, Lee HS, Deb GK, Lee YS, Kwon TH, Kong IK. (2009) Effect of cytoplasmic lipid content on in vitro developmental efficiency of bovine IVP embryos. Theriogenology 2009; 72: 584–589.
Jozwik, A., Krzyzewski, J., Strzalkowska, N., Polawska, E., Bagnicka, E., Wierzbicka, A., Niemczuk, K., Lipinska, P., & Horbanczuk, J. O. (2012). Relations between the oxidative status, mastitis, milk quality and disorders of reproductive functions in dairy cows—A review. Animal Science. 30, 297–307.
Khalili M., Chamani M., Amanlou H., Nikkhah A. and Sadeghi A.A. (2019). Effects of different sources of selenium supplementation on antioxidant indices, biochemical parameters, thyroid hormones and Se status in transition cows, Acta Scientiarum. Animal Sciences, v. 41, e44392, 2019
Kommisrud E., Østerås O., & Vatn, T. (2005). Blood Selenium Associated with Health and Fertility in Norwegian Dairy Herds. Acta Veterinaria Scandinavica, 46,229–240, doi: 10.1186/1751-0147-46-229. 
Lacetera, N., D. Scalia, U. Bernabucci, B. Ronchi, D. Pirazzi, and A. Nardone. (2005). Lymphocyte functions in overconditioned cows around parturition. J. Dairy Sci. 88:2010–2016.
Lavon, Y., G. Leitner, T. Goshen, R. Braw-Tal, S. Jacoby, and D. Wolfenson. (2008). Exposure to endotoxin during estrus alters the timing of ovulation and hormonal concentrations in cows. Theriogenology 70:956–967.
Lei, J., Sun, L., Huang, S., Zhu, C., Li, P. He, J., Mackey, V., Coy, D. H., & He, Q. (2019). The antimicrobial peptides and their potential clinical applications. American journal of translational research, 11(7),3919.
Leroy JL, Valckx SD, Jordaens L, De Bie J, Desmet KL, Van Hoeck V, Britt JH, Marei WF, Bols PE. (2015) Nutrition and maternal metabolic health in relation to oocyte and embryo quality: critical views on what we learned from the dairy cow model. Reprod Fertil Dev 2015; 27: 693–703.
Littel R.C., Milliken G.A., Stroup W.W. and Wolfinger R.D. (2006). SAS system for mixed models. 2nd ed. SAS Institute Inc., Cary NC. 813 pp.
 Lolicato F, Brouwers JF, de Lest CH, Wubbolts R, Aardema H, Priore P, Roelen BA, Helms JB, Gadella BM. (2015) The cumulus cell layer protects the bovine maturing oocyte against fatty acid-induced lipotoxicity. Biol Reprod 2015; 92: 16.
Lonergan P and Fair T. (2016) Maturation of Oocytes in Vitro. Annu Rev Anim Biosci 2016; 4: 255–268.
Lykkesfeldt, J and Svendsen, O (2007). Oxidants and antioxidants in disease: oxidative stress in farm animals. Vet. J., 173: 502-511.
Mallet JF, Duarte J, Vinderola G, Anquenot R, Beaulieu M, Matar C. (2017) Purification and characterization of a peptide from soybean with cancer cell proliferation inhibition. J Food Biochem. 41: 1–7
Manríquez, D., W. W. Thatcher, J. E. P. Santos, R. C. Chebel, K. N. Galvão, G. M. Schuenemann, R. C. Bicalho, R. O. Gilbert, S. Rodriguez-Zas, C. M. Seabury, G. J. M. Rosa, and P. Pinedo. (2021). Effect of body condition change and health status during early lactation on performance and survival of Holstein cows. J. Dairy Sci. 104:12785–12799. https: / / doi .org/ 10 .3168/ jds .2020 -20091
Marei, W. F. A., J. De Bie, I. Xhonneux, S. Andries, J. H. Britt, and J. L. M. R. Leroy. (2022). Metabolic and antioxidant status during transition is associated with changes in the granulosa cell transcriptome in the preovulatory follicle in high-producing dairy cows at the time of breeding. J. Dairy Sci. 105:6956–6972. https: / / doi .org/ 10 .3168/ jds .2022 -21928.
Matthews, L. R., C. Cameron, A. J. Sheahan, E. S. Kolver, and J. R. Roche. (2012). Associations among dairy cow body condition and welfare-associated behavioral traits. J. Dairy Sci. 95:2595–2601.
Medzhitov, R. (2008). Origin and physiological roles of inflammation. Nature 454:428–435.
Mehdi, Y. & Dufrasne, I. (2016). Selenium in cattle: a review. Molecules, 21(4), 1-14. doi: 10.1186/1751-0147-46-229.10.3390/molecules21040545
Middleton, E. L., T. Minela, and J. R. Pursley. (2019). The high-fertility cycle: How timely pregnancies in one lactation may lead to less body condition loss, fewer health issues, greater fertility, and reduced early pregnancy losses in the next lactation. J. Dairy Sci. 102:5577–5587. https: / / doi .org/ 10 .3168/ jds .2018 -15828.
Mihalikova K., Gresakova L., Boldižarova K., Faix S., Leng L. and Kisidayova S. (2005). The effects of organic selenium supplementation on the rumen ciliate population in sheep. Folia Microbiologica, 50, 353–356.
Minor D.J., Trower S.L., Strang B.D., Shaver R.D. and Grummer R.R. (1998). Effects of nonfiber carbohydrate and niacin on periparturient metabolic status and lactation of dairy cows. J Dairy Sci. 1998 Jan;81(1):189-200.  doi: 10.3168/jds. S0022-0302(98)75566-3.
Mohamed, HE (2007). Antioxidant status and degree of oxidative stress in mastitic and healthy camel (Camelus dromedarius). Res. J. Anim. Sci., 1: 92-94.
Mookherjee, N., Anderson, M. A., Haagsman, H. P., & Davidson, D. J. (2020). Antimicrobial host defence peptides: functions and clinical potential. nature reviews drug discovery, 19(5),311-332. doi: https://doi.org/10.1038/s41573-019-0058-8.
Moore SG, Fair T, Lonergan P, Butler ST. (2014) Genetic merit for fertility traits in Holstein cows: IV. Transition period, uterine health, and resumption of cyclicity. J Dairy Sci 2014; 97: 2740–2752.
Nathalie L.F., Delphine M. and Christiane O. (2004). Modifications of protein and amino acid metabolism during inflammation and immune system activation. Live. Prod. Sci. 87: 37- 45.
Nawaz, A., Irshad, S., Hoseinifar, S. H., Xiong. H., (2018). The functionality of prebiotics as immunostimulant: Evidences from trials on terrestrial and aquatic animals. Fish & shellfish immunology, 76,272-278. doi: https://doi.org/10.1016/j.fsi.2018.03.004
NRC-National Research Council (1989). Nutrient requirements of dairy cattle, sixth revised ed. National Academic Science, Washington, DC.
NRC-National Research Council (2001). Nutrient requirements of dairy cattle, 7th revised edition. National Academies Press. Washington, DC.
NASEM-National Research Council (2021). Nutrient requirements of dairy cattle, 8th revised edition. National Academies Press. Washington, DC.
Ospina, P. A., D. V. Nydam, T. Stokol, and T. R. Overton. (2010a). Associations of elevated nonesterified fatty acids and β-hydroxybutyrate concentrations with early lactation reproductive performance and milk production in transition dairy cattle in the northeastern United States. J. Dairy Sci. 93:1596–1603. https: / / doi .org/ 10 .3168/ jds .2009 -2852.
Ospina, P. A., D. V. Nydam, T. Stokol, and T. R. Overton. (2010b). Association between the proportion of sampled transition cows with increased nonesterified fatty acids and β-hydroxybutyrate and disease incidence, pregnancy rate, and milk production at the herd level. J. Dairy Sci. 93:3595–3601. https: / / doi .org/ 10 .3168/ jds .2010 -3074.
Pedernera, M., P. Celi, S. C. Garcia, H. E. Salvin, I. Barchia, and W. J. Fulkerson. (2010). Effect of diet, energy balance and milk production on oxidative stress in early-lactating dairy cows grazing pasture. Vet. J. 186:352–357.
Peter, A. T., W. T. Bosu, and R. J. DeDecker. (1989). Suppression of preovulatory luteinizing hormone surges in heifers after intrauterine infusions of Escherichia coli endotoxin. Am. J. Vet. Res. 50:368–373.
Pinedo, P., D. Manriquez, J. Azocar, B. R. Klug, and A. De Vries. (2022). Dynamics of automatically generated body condition scores during early lactation and pregnancy at first artificial insemination of Holstein cows. J. Dairy Sci. 105:4547–4564. https: / / doi .org/ 10 .3168/ jds .2021 -21501.
Pryce, J. E., M. D. Royal, P. C. Garnsworthy, and I. L. Mao. (2004). Fertility in the high producing dairy cow. Livest. Prod. Sci. 86:125–135.
Pryce, J. E., M. P. Coffey, and G. Simm. (2001). The relationship between body condition score and reproductive performance. J. Dairy Sci. 84:1508–1515. https: / / doi .org/ 10 .3168/ jds .S0022 -0302(01)70184 -1.
Putnam D.E. and Varga G.A. (1998). Protein density and its influence on metabolite concentration and nitrogen retention by Holstein cows in late gestation. Journal of Dairy Science 81, 1608–1618.
Rathbun, F. M., R. S. Pralle, S. J. Bertics, L. E. Armentano, K. Cho, C. Do, K. A. Weigel, and H. M. White. (2017). Relationships between body condition score change, prior mid-lactation phenotypic residual feed intake, and hyperketonemia onset in transition dairy cows. J. Dairy Sci. 100:3685–3696. https: / / doi .org/ 10 .3168/ jds .2016 -12085.
Rayman M. P. (2000). The importance of selenium to human health. The Lancet, 356(9225), 233–241.
Ribeiro, E. S., F. S. Lima, L. F. Greco, R. S. Bisinotto, A. P. A. Monteiro, M. Favoreto, H. Ayres, R. S. Marsola, N. Martinez, W. W. Thatcher, and J. E. P. Santos. (2013). Prevalence of periparturient diseases and effects on fertility of seasonally calving grazing dairy cows supplemented with concentrates. J. Dairy Sci. 96:5682–5697.
Ribeiro, E. S., K. N. Galvao, W. W. Thatcher, and J. E. P. Santos. (2012). Economic aspects of applying reproductive technologies to dairy herds. Anim. Reprod. 9:370–387.
Roche, J. R., Burke, C. R., Crookenden, M. A., Heiser, A., Loor, J. L., Meier, S., Mitchell, M. D., & Phyn, C. V. C. (2017). Fertility and the transition dairy cow. Reproduction, Fertility and Development, 2017, 30, 85–100.
Roche, J. R., N. C. Friggens, J. K. Kay, M. W. Fisher, K. J. Stafford, and D. P. Berry. (2009). Invited review: Body condition score and its association with dairy cow productivity, health, and welfare. J. Dairy Sci. 92:5769–5801.
Romanyukha, A. A., S. G. Rudneva, and I. A. Sidorov. (2006). Energy cost of infection burden: An approach to understanding the dynamics of host-pathogen interactions. J. Theor. Biol. 241:1–13.
Rossi C.A. Sgoifo, Compiani R., Baldi G., M. Muraro, J.P. Marden, R. Rossi, G. Pastorelli, C. Corino and V. Dell’Orto., (2017). Organic selenium supplementation improves growth parameters, immune and antioxidant status of newly received beef cattle. Journal of Animal and Feed Sciences, 26, 2017, 100–108 https://doi.org/10.22358/jafs/70765/2017
Santos, J. E. P., H. M. Rutigliano, and M. F. Sa Filho. (2009). Risk factors for resumption of postpartum cyclicity and embryonic survival in lactating dairy cows. Anim. Reprod. Sci. 110:207–221.
Santos, J. E. P., R. S. Bisinotto, E. S. Ribeiro, F. S. Lima, L. F. Greco, C. R. Staples, and W. W. Thatcher. (2010). Applying nutrition and physiology to improve reproduction in dairy cattle. Soc. Reprod. Fertil. Suppl. 67:387–403.
Schabenberger, O.S., Gregoire, T.G. and Kong, F. (2000). Collections of simple effects and their relationship to main effects and interactions in factorials. Am. Stat. 54, 210–214
Seyfi, R., Kahaki, F. A., Ebrahimi, T., Montazersaheb, S., Eyvazi, S., Babaeipour, V., & Tarhriz v, (2020). Antimicrobial peptides (AMPs): roles, functions and mechanism of action. International Journal of Peptide Research and Therapeutics, 26:1451-1463. doi: https://doi.org/10.1007/s10989-019-09946-9.
Sheldon, I. M., D. E. Noakes, A. N. Rycroft, D. U. Pfeiffer, and H. Dobson. (2002). Influence of uterine bacterial contamination after parturition on ovarian dominant follicle selection and follicle growth and function in cattle. Reproduction 123:837–845.
Sordillo, L. M. (2013). Selenium-dependent regulation of oxidative stress and immunity in periparturient dairy cattle. Veterinary Medicine International, 1-8. doi: 10.1155/2013/154045.
Sordillo, L. M., & Aitken, S. L. (2009). Impact of oxidative stress on the health and immune function of dairy cattle. Veterinary Immunol Immunopathol, 128(1-3),104-109, doi: https://doi.org/10.1016/j.vetimm.2008.10.305.
Sordillo, L. M., Contreras, G. A., & Aitken. S. L. (2009). Metabolic factors affecting the inflammatory response of periparturient dairy cows. Animal Health Research Reviews, ,10(1), 53-63, doi: https://doi.org/10.1017/S1466252309990016.
Surai, P. F., Kochish, I, I, Fisinin, V. I. & Juniper, D. T. (2019). Revisiting Oxidative Stress and the Use of Organic Selenium in Dairy Cow Nutrition. Animals, 9(7),462. doi: https://doi.org/10.3390/ani9070462.
Sutton ML, Cetica PD, Beconi MT, Kind KL, Gilchrist RB, Thompson JG. (2003) Influence of oocyte-secreted factors and culture duration on the metabolic activity of bovine cumulus cell complexes. Reproduction 2003; 126: 27–34.
Sutton-McDowall ML, Gilchrist RB, Thompson JG. (2010) The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction 2010; 139: 685–695.
Van Hoeck V, Sturmey RG, Bermejo-Alvarez P, Rizos D, Gutierrez-Adan A, Leese HJ, Bols PE, Leroy JL. (2011) Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryo physiology. PLoS One 2011; 6: e23183.
Walsh, R. B., J. S. Walton, D. F. Kelton, S. J. LeBlanc, K. E. Leslie, and T. F. Duffield. (2007). The effect of subclinical ketosis in early lactation on reproductive performance of postpartum dairy cows. J. Dairy Sci. 90:2788–2796.
Wang L., Ma M., Yu Z. and Du S.K. (2021). Preparation and identification of antioxidant peptides from cottonseed proteins. Food Chem., 352, 129399.
Warzych E, Pawlak P, Pszczola M, Cieslak A, Lechniak D. (2017) Prepubertal heifers versus cows-The differences in the follicular environment. Theriogenology 2017; 87: 36–47.
Warzych E. and Lipinska P., (2020) Energy metabolism of follicular environment during oocyte growth and maturation. Journal of Reproduction and Development, Vol. 66, No 1.
Webb, R., P. C. Garnsworthy, J. G. Gong, and D. G. Armstrong. (2004). Control of follicular growth: Local interactions and nutritional influences. J. Anim. Sci. 82:E63–E74.
Wei, M. J., Wang, Z. N., Yang, Y., Zhang, S. J., Tang, H., Li, H., & Bi, C. L. (2021). Selenium Attenuates, S. aureus-Induced Inflammation by Regulation TLR2 Signaling Pathway and NLRP3 Inflammasome in RAW 264.7 Macrophages. Biological Trace Element Research, 2021,1–7. doi: 10.1007/s12011-021-02676-4. 
 Wullepit N, Raes K, Beerda B, Veerkamp RF, Fremaut D, De Smet S (2009) Influence of management and genetic merit for milk yield on the oxidative status of plasma in heifers. Livest Sci 123:276–282
Zebeli, Q., Ghareeb, K., Humer, E., Metzler-Zebeli, B.U., & Besenfelder, U. (2015). Nutrition, rumen health and inflammation in the transition period and their role on overall health and fertility in dairy cows. Research in Veterinary Science, 103, 126–136.
Zheng, Y., Xie, T., Li, S., Wang, W., Wang, Y., Cao, Z., & Yang, H. (2022). Effects of selenium as a dietary source on performance, inflammation, cell damage, and reproduction of livestock induced by heat stress: A review. Frontiers in Immunology, 12,820853. doi: https://doi.org/10.3389/fimmu.2021.820853.