کارآیی فن‌آوری تعیین ژنوتیپ از طریق توالی‌یابی و مقایسه آن با آرایه‌ی چندشکلی تک‌نوکلئوتیدی در یک جمعیت مرغ نسل دو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه علوم دامی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران.

2 گروه علوم دامی دانشکده کشاورزی دانشگاه تربیت مدرس تهران ایران.

3 گروه علوم دامی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

4 گروه علوم دامی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران.

چکیده

پژوهش‌گران حوزه ژنوم در بخش طیور انواع گسترده‌ای از فناوری‌ها را برای جمع‌آوری اطلاعات ژنتیکی در اختیار دارند. این فناوری‌ها که عبارت از آرایه‌های‌ چندشکلی تک‌نوکلئوتیدی مرغ و تعیین ژنوتیپ مبتنی بر توالی‌یابی هستند، بسته به اهداف مطالعه می‌تواند استفاده‌های مختلفی داشته باشند. هدف از مطالعه حاضر، مقایسه‌ی نتایج حاصل از توالی‌یابی یک جمعیت F2 حاصل از تلاقی دو طرفه پرنده‌های بومی ارومیه و یک لاین تجاری گوشتی آرین با استفاده از فن‌آوری‌های توالی‌یابی و آرایه K60 بود. در فن‌آوری توالی‌یابی، 882918 نشان‌گر شناسایی شد که 815613 آن‌‌ها (40/92 درصد)  مربوط به کروموزوم‌های 1 تا 28 بودند. در این فن‌آوری، کروموزوم 1 بیشترین و کروموزوم W کم‌ترین تعداد نشان‌گر را داشتند. در فن‌آوری آرایه، تعداد 51347 نشان‌گر بر روی کروموزوم‌های 1 تا 28 پراکنده بودند و کروموزوم 1 بیشترین و کروموزوم 16 کم‌ترین تعداد نشان‌گر را نشان داد. داده‌های حاصل از فن‌آوری توالی‌یابی، تعداد نشان‌گر و بلوک‌های هاپلوتایپی بیشتری نسبت به آرایه‌ی 60 کیلوبازی شناسایی کرد. میزان عدم تعادل پیوستگی در فواصل فیزیکی 10 کیلوباز، 100 کیلوباز و 1000 کیلوباز در فن‌آوری توالی‌یابی نسبت به آرایه‌ی 60 کیلوباز کم‌تر بود. تنوع زیاد نشان‌گرها در داده‌های ژنوتیپ‌کردن از طریق توالی‌یابی موجب شد ساختارهای جمعیتی و خویشاوندی یکنواختی ایجاد شود. همچنین، علاوه بر عملکرد بالا در شناسایی نشان‌گرها، فن‌آوری ژنوتیپ کردن از طریق توالی‌یابی، هزینه‌های تعیین ژنوتیپ به‌ازای هر نمونه را نیز کاهش داد، بنابراین، به نظر می‌رسد استفاده از فن‌آوری ژنوتیپ کردن از طریق توالی‌یابی بتواند جایگزین مناسبی برای فن‌آوری آرایه‌ی K60 در مطالعات پویش ژنوم در جمعیت‌های مرغ شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Efficiency of genotyping by sequencing technology and its comparison with single nucleotide polymorphism array in an F2 chickens population

نویسندگان [English]

  • Narjes Gorgani Firouzjah 1
  • Rasoul Vaez Torshizi 2
  • Alireza Ehsani 3
  • Ali Akbar Masoudi 4
  • Peymaneh Davoodi 4
  • Hossein Bani Saadat 4
1 PhD student,, Department of Animal Science, Agricultural Faculty, Tarbiat Modares University, Tehran,, Iran.
2 Department of Animal Science, Agricultural Faculty, Tarbiat Modares University, Tehran, Iran.
3 Department of Animal Science, Agricultural Faculty, Tarbiat Modares University, Tehran, Iran.
4 Department of Animal Science, Agricultural Faculty, Tarbiat Modares University, Tehran, Iran.
چکیده [English]

For researches, there is a wide variety of available technologies to collect molecular information in the field of chicken genomics. These technologies, which consist of single-nucleotide polymorphism (SNP) arrays and genotyping by sequencing (GBS), depending on the goals of the study, can have different applications. The aim of this study was to compare the results of markers genotyped by two technologies, namely, 60 K SNP BeadChip and genotyping by sequencing, using data collected on F2 chicken population resulting from a reciprocal crosses between a native bird of Urmia and a fast-growing commercial Arian line. In genotyping by GBS, 882,918 SNPs were identified, of which 815,613 SNPs (92.40%) were located on chromosomes 1 to 28. In 60 K SNP array, the number of SNPs for each sample were 51347, which were distributed on chromosomes 1 to 28. The GBS data identified more markers and haplotype blocks than the 60 K SNP array. The rate of linkage disequilibrium (LD) in the physical distances of 10, 100 and 1000 kbp in GBS was less than that of SNP array. The large variety of SNPs in the GBS resulted in a uniform population structures and kinship. Also, in addition to the high performance for identifying single nucleotide polymorphisms, the technology of GBS also reduced the costs of the genotyping for each sample, therefore, it seems that the use of genotyping by sequencing technology could be a suitable alternative method to the 60 K SNP BeadChip array technology for genome-wide association studies in chicken population.
 
 

کلیدواژه‌ها [English]

  • Genotyping by Sequencing (GBS)
  • Single Nucleotide Polymorphism (SNP) Array
  • F2 chicken population

Extended Abstract

Introduction

    Nowadays, researchers in the field of agricultural genomics have a wide variety of technologies to collect molecular genetic information. These technologies, which consist of 60k single nucleotide polymorphism (SNP) BeadChip array and Genotyping by Sequencing (GBS), depending on the goals of the researcher's study, can have different applications. The high cost of single nucleotide polymorphism array technology per sample limits their use in research applications, especially for the large-sized populations. The aim of this study was to evaluate the efficiency of the data obtained from the genotyping by sequencing (GBS) technology in an F2 chickens population and compare the results with the data obtained from a 60k SNP BeadChip array.

 

Materials & Methods

    A F1 chicken population was created from a reciprocal crosses between a fast-growing Arian commercial broiler line and an Urmia native fowls. The F1 population were intercrossed randomly to produce 312 F2 chickens in eight half-sib families from five hatches. The Genomic DNA of these birds were extracted from blood samples and then genotyped by a commercial Illumina chicken SNP BeadChip panel in collaboration with Aarhus University, Denmark. Also, 368 birds, including 312 birds from the F2 generation, 37 birds from the F1 generation, and 19 birds from the base population generation were genotyped using genotyping by sequencing technology by The Elshire Group Ltd., New Zealand.

 

Results

    Using genotyping by sequencing technology, 882,918 SNPs were detected, of which 815,613 SNP were located on chromosomes 1 to 28 and 67,305 SNPs on autosomal chromosomes 30 to 33 and sex chromosomes Z and W. For 60k SNP array, 51347 SNP markers, located on chromosomes 1 to 28, were genotyped for each sample. The analysis of the missing genotype in 60k SNP array technology indicated that almost all the birds had all single nucleotide polymorphisms. These results for the missing genotype in the genotyping by sequencing technology were about 54%, which could be reduced by using imputation of missing data. The rate of linkage disequilibrium (LD) in the physical distances of 10 kbp, 100 kbp and 1000 kbp in GBS technology was less than that of SNP array. By increasing the physical distances, the rate of LD decreased. The number of haplotype blocks in the genotyping by sequencing technology (167396) were substantially higher than the 60 kb single nucleotide polymorphism array (6783).  

Conclusion

    In the present study, the diversity of SNPs in the genotyping by sequencing data was very high, creates an acceptable homogeneity of population structure and kinship structures. Since haplotypes blocks have a higher linkage disequilibrium with quantitative trait loci (QTL), it is expected that the genotyping by sequencing technology improve genome-wide association studies (GWAS) due to its higher haplotype blocks. Also, in addition to the high performance in identifying single nucleotide polymorphisms, the technology of GBS also reduced the costs of the genotyping for each sample, therefore, it seems that the use of genotyping by sequencing technology could be a suitable alternative method to the 60k SNP BeadChip array technology for genome-wide association studies in chicken population.

جوانروح علی­آباد، علی؛ واعظ ترشیزی، رسول؛ مسعودی، علی­اکبر و احسانی، علیرضا (1395). مطالعه پویش کل ژنومی صفات کیفی گوشت در جمعیت F2 حاصل از مرغ بومی آذربایجان غربی و سویه گوشتی آرین. تولیدات دامی-دانشگاه تهران. دوره 18-شماره 4- صفحه‌های 697-709.
مقصودی، علی؛ واعظ ترشیزی، رسول؛ مسعودی، علی­اکبر و کریمی ترشیزی، محمد­امیر (1392). دوشکلی جنسی در پاسخ ایمنی سلولی و خونی دو سویه از طیور تجاری لاین آرین و بومی آذربایجان غربی. مجله علوم دامی ایران-دانشگاه تهران. دوره 44-شماره 4- صفحه­های 367-374.
REFERENCES
Albrechtsen, A., Nielsen, F. C., & Nielsen, R. (2010). Ascertainment biases in SNP chips affect measures of population divergence. Molecular Bioloy Evolution, 27(11), 2534–2547.
Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y. & Buckler, E. S. (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 23(19), 2633-2635.
Brodie, A., Azaria, J. R., & Ofran, Y. (2016).  How far from the SNP may the causative genes be? Nucleic Acids Research, 44(13), 6046-54. 
Davey, J. W., Hohenlohe, P. A., Etter, P. D., Boone, J. Q., & Catchen, J. M. (2011). Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics, 12, 499–510.
Donato, M., Peters, S. O., Mitchell. S. E., Hussain, T., & Imumorin, I. G. (2013). Genotyping-by-sequencing (GBS): a novel, efficient and cost-effective genotyping method for cattle using next-generation sequencing.  PLoS One, 8(5), e62137.
Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species, PLoS One, 6(5), e19379.
Emara, M. G., & Kim, H. (2003). Genetic markers and their application in poultry breeding. Poultry Science, 82, 952–957.
Fiedler, J. D., Lanzatella, C., Okada, M., Jenkins, J., Schmutz, J., & Tobias, C. M. (2015). High-density single nucleotide polymorphism linkage maps of lowland switchgrass usinggenotyping-by-sequencing. The Plant Genome, 8(2).
Franssen S. U., Barton N. H., Schlötterer C. (2017). Reconstruction of Haplotype-Blocks Selected during Experimental Evolution. Molecular Biology and Evolution, 34(1):174-184.
Gabriel, S. B., Schaffner, S. F., Nguyen, H., Moore, J. M., Roy, J., Blumenstiel, B., Higgins, J., Defelice, M., Lochner, A., Ggart, M., Liu-cordero, S. N., Rotimi, C., Adeyemo, A., Cooper, R., Ward, R., Lander, E. S., Daly, M. J., & Altshuler, D. (2002). The structure of haplotype blocks in the human genome. Science, 296, 2225-2229.
Gibson, G. (2012).Rare and common variants: twenty arguments. Nature Reviews Genetics, 13, 135-145.
Glaubitz, J. C., Casstevens, T. M., Lu, F., Harriman, J., Elshire, R. J., Sun, Q., & Buckler E. S. (2014). TASSEL-GBS: A High Capacity Genotyping by Sequencing Analysis Pipeline, PLoS ONE, 9(2), e90346.
Groenen M. A., Wahlberg P., Foglio M., Cheng H. H., Megens H. J., Crooijmans R.P., Besnier F., Lathrop M., Muir W. M., Wong G. K., Gut I., & Andersson L. (2009). A high-density SNP-based linkage map of the chicken genome reveals sequence features correlated with recombination rate. Genome Research, 19(3):510-9.
Haobin, H., Xiaoliang, W., Caiyun, Z., Yingying, T., Wenwei, L., Xia, C., Zhigang, X., Junfeng, Y., & Changsuo, Y. (2020). Genomic analysis of GBS data reveals genes associated with facial pigmentation in Xinyang blue-shelled layer. Archives Animal Breeding, 63, 483–491.
Horvath D. P., Stamm M., Talukder Z. I., Fiedler J., Horvath A. P., Horvath G. A., Chao W. S., Anderson J.V. (2020). A New Diversity Panel for Winter Rapeseed (Brassica napus L.) Genome-wide association studies. Agronomy, 10(12):2006.
He, J., Zhao, X., Laroche, A., Lu, Z. X., Liu, H., & Li, Z. (2014). Genotyping-by-sequencing (GBS), an ultimate marker assisted selection (MAS) tool to accelerate plant breeding. Frontiers in Plant Science, 5, 484.
Heslot, N., Rutkoski, J., Poland, J., Jannink, J. L., & Sorrells, M. E. (2013). Impact of marker ascertainment bias on genomic selection accuracy and estimates of genetic diversity. PLoS One, 8(9), e74612.
Huang, Y. F., Poland, J. A., Wight, C. P., Jackson, E. W., & Tinker, N. A. (2014). Using genotyping-by-sequencing (GBS) for genomic discovery in cultivated oat. PLoS ONE, 9(7), e102448.
Illumina. (2014). sequence-based genotyping brings agrigenomics to a crossroads. Application Spotlight: Agrigenomics.
Javanrouh-Aliabad, A., Vaez Torshizi, R., Masoudi, A. A., & Ehsani, A. (2016). Genome-wide association study for meat quality traits in an F2 intercross between Azerbaijan native chickens and Ariyan broiler line. Animal Production. 18(4), 697-709 (in Persian).
Khanyile, K. S., Dzomba, E. F., & Muchadeyi, F. C. (2015). Haplo-block structure of Southern African village chicken populations inferred using genome-wide SNP data. Genetics and Molecular Research, 14(4), 12276-12287.
Lander, E. S., & Schork, N. J. (1994). Genetic dissection of complex traits. Science, 265, 2037-2048.
Liao, R., Wang, Z., Chen, Q., Tu, Y., Chen, Z., Wang, Q., Yang, C., Zhang, X., & Pan, Y. (2015). An efficient genotyping method in chicken based on genome reducing and sequencing. PLoS One, 10(8), e0137010.
Loureiro, L. O., Engstrom, M. D. & Lim, B. K. (2020). Optimization of genotype by sequencing data for phylogenetic purposes. MethodsX, 20(7):100892.
Maghsoudi, A., Vaez Torshizi, R, Masoudi, A. A, & Karimi Torshizi, M. A. (2014). Sexual dimorphism in cellular and humoral immune responses in two strains of commercial Iranian Arian vs Western Azarbaijan native fowls. Iranian Journal of Animal science, 44, 367-374 (in Persian).
Mascher, M., Schuenemann, V. J., Davidovich, U., Marom, N., Himmelbach, A., Hübner, S., Korol, A., David, M., Reiter, E., Riehl, S., Schreibe, M., Vohr, S. H., Green, R. E., Dawson, I. K., Russell, J., Kilian, B., Muehlbauer, G. J., Waugh, R., Fahima, T., Weiss, J. K. E., & Stein, N. (2016). Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley. Nature Genetics, 48(9):1089-1093.
Negro, S. S., Millet, E. J., Madur, D., Bauland, C., Combes, V., Welcker, C., Tardieu, F., Charcosset, A. and Nicolas, S. (2019). Genotyping-by-sequencing and SNP-arrays are complementary for detecting quantitative trait loci by tagging different haplotypes in association studies. BMC Plant Biology, 19, 318.
Patterson, N., Price, A. L., & Reich, D. (2006). Population structure and eigenanalysis. PLoS Genetetics, 2(12), e190.
Pértille, F., Guerrero-Bosagna, C., Henrique da Silva, V., Boschiero, C., de Ribamar da Silva Nunes, J., Corrêa Ledur, M., Jensen, P., & Coutinho, L. L. (2016). High-throughput and cost-effective chicken genotyping using next- generation sequencing. Scientific Reports, 6, 26929.
Pértille, F., Moreira1, G. C. M., Zanella, R., de Ribamar da Silva Nunes, J., Boschiero, Clarissa., Rovadoscki1,G. A., Mourão,  G. B., Ledur, M. C., & Coutinho, L. L. (2017). Genome-wide association study for performance traits in chickens using genotype by sequencing approach. Nature, 7, 41748.
Pingxian, W. u., Kai, W., Jie, Z., Dejuan, C., Qiang, Y., Xidi, Y., Yihui, L., Bo, F., Anan, J., Linyuan, Shen., Weihang, X., Yanzhi, J., Li, Z., Yangshuang, Z., Xu, X., Xuewei, L., & Guoqing, T., (2019). GWAS on imputed whole-genome resequencing from genotyping-by-sequencing data for farrowing interval of different parities in pigs. Frontiers in Genetics, 10:1012.
Pook, T., Mayer, M., Geibel, J., Weigend, S., Cavero, D., Schoen, C. C. & Simianer, H. (2020). Improving imputation quality in BEAGLE for crop and livestock data. G3 (Bethesda), 7:10(1), 177-188.
Pritchard, J. K., Stephens, M., Rosenberg, N.A., & Donnelly, P. (2000). Association mapping Whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81, 559-575.
Purcell, S., Neale, B. Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, P., de Bakker, P. I. W., Daly, M. J., & Sham, P. C. (2007). PLINK: a tool set for in structured populations. American Journal of Human Genetics, 67, 170-81.
Romay, M. C., Millard, M. J., Glaubitz J. C., Peiffer, J. A., Swarts, K. L., Casstevens, T. M., Elshire, R. J., Acharya, C. B., Mitchell, S. E., Flint-Garcia, S. A., McMullen, M. D., Holland, J. B., Buckler, E., & Gardne, C. A. (2013). Comprehensive genotyping of USA national maize inbred seed bank. Genome Biology, 14:R55.
Sehgal, D., Mondal, S., Crespo-Herrera, L., Velu, G., Juliana, P., Huerta-Espino, J., Shrestha, S., Poland, J., Singh, R. & Dreisigacker, S. (2020). Haplotype-based, genome-wide association study reveals stable genomic regions for grain yield in CIMMYT spring bread wheat. Frontier Genetics, 3:11, 589490.
Sukumaran, S., Li, X., Li, X., Zhu, C., Bai, G., Perumal, R., Tuinstra, M. R., Prasad, P. V., Mitchell, S. E., Tesso, T. T., & Yu, J. (2016) QTL mapping for grain yield, flowering time, and stay-green traits in sorghum with genotyping-bysequencing markers. Crop Science, 56, 1429-1442.
Thomson, M. J. (2014). High-throughput SNP genotyping to accelerate crop improvement. Plant Breeding Biotechnology, 2, 195–212.
Wang, X., Su, G., Hao, D., Lund, M. S. & Kadarmideen, h. N. (2020). Comparisons of improved genomic predictions generated by different imputation methods for genotyping by sequencing data in livestock populations. Journal of Animal Science and Biotechnology, 11, 3.
Zhao, F. P., Wang, G. K., Zeng, T., Wei, C. H.,  Zhang, L., Wang, H. H., Zhang, S. Z., Liu, R. Z., Liu, Z., & Du, L. X. (2014). Estimations of genomic linkage disequilibrium and effective population sizes in three sheep populations. Livestock Science, 170, 22–29.