تاثیر اندازه ذرات کربنات کلسیم و آنزیم فیتاز بر عملکرد، کیفیت تخم مرغ و قابلیت هضم ظاهری کلسیم در مرغان تخمگذار تجاری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران

2 مرکز تحقیقات تک معده ایها، دانشکده کشاورزی و محیط زیست، دانشگاه مسی، نیوزیلند.

چکیده

این پژوهش به­منظور بررسی اثر اندازه ذرات کربنات کلسیم و آنزیم فیتاز بر عملکرد تولیدی، صفات کیفی تخم مرغ و قابلیت هضم ظاهری کلسیم، در مرغان تخمگذار تجاری انجام شد. آزمایش با 216 قطعه مرغ تخمگذار در قالب طرح کاملا تصادفی و بصورت آزمایش فاکتوریل در شش تیمار آزمایشی و شش تکرار به ازاء هر تیمار از سن 19-26 هفتگی انجام شد. عوامل مورد مطالعه شامل سه اندازه ذرات کربنات کلسیم (ریز (کمتر از 5/ 0 میلی‌متر)، متوسط (5/0-2 میلی‌متر) و درشت (2-4 میلی‌متر)) و دو سطح آ نزیم فیتاز (0 و 300 واحد در کیلوگرم جیره) بودند. درصد تولید تخم مرغ و گرم تخم مرغ تولیدی تحت تاثیر تیمارهای آزمایشی قرار نگرفت. افزودن فیتاز به جیره موجب افزایش عددی وزن تخم مرغ در 3 هفته دوم آزمایش (P=0.06)  و کل دوره آزمایش گردید ((P=0.1).  اندازه ذرات ریز و درشت کربنات کلسیم، ضخامت پوسته تخم‌مرغ را در مقایسه با اندازه متوسط ((P˂0.01)  افزایش داد و افزودن آنزیم فیتاز، موجب افزایش درصد پوسته تخم مرغ گردید (P˂0.05).  ضریب قابلیت هضم ظاهری کلسیم در جیره‌های حاوی کربنات کلسیم با اندازه ریز و متوسط بالاتر از اندازه درشت(P˂0.0001)  بود. اندازه ذرات متوسط(P˂0.05)  موجب کاهش رنگ زرده گردید. اندازه ذرات متوسط کربنات کلسیم موجب بهبود قابلیت هضم ماده خشک در مقایسه با اندازه ریز و درشت گردید. نتایج این تحقیق نشان داد که اندازه ذرات کربنات کلسیم بر صفات تولیدی تاثیرگذار نیست، اندازه ریز و متوسط کربنات کلسیم بدلیل افزایش قابلیت هضم کلسیم در دستگاه گوارش در مقایسه با اندازه درشت (2-4 میلی‌متر) در مرغ‌های جوان توصیه می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Influence of limestone particle size and phytase enzyme on performance, egg quality, and total tract retention of Ca in commercial laying hens

نویسندگان [English]

  • Mohammed Abd Oun Jawad 1
  • Soudabeh Moradi 1
  • M.Reza Abdollahi 2
1 Department of Animal Science, Faculty of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
2 2Monogastric Research Center, School of Agriculture and Environment, Massey University, Palmerston North, 4442, New Zealand
چکیده [English]

The aim of this study was to evaluate the effect of limestone particle size and phytase enzyme supplementation on production performance, egg quality traits, and coefficient of apparent digestibility of calcium of commercial laying hens. A total of 216 laying hens were randomly distributed in six treatments, and six replicates per each. The design consisted of a factorial arrangement of three particle sizes of limestone from the same source (fine (<0.5 mm), medium (0.5-2 mm) and coarse (2-4 mm)) and two phytase levels (0 and 300 (FTU)/kg) in a completely randomized design. Egg production and egg mass were not influenced by experimental diets. Phytase inclusion numerically increased egg weight in second (P=0.06) and whole trial period (20-26 wk, P=0.1). Fine and coarse particles of limestone increased shell thickness (P < 0.01), compared to medium particles, also phytase supplementation improved shell percent (P < 0.01). Fine and medium sizes of limestone resulted in a higher apparent digestibility coefficient of Ca compared to coarse size ((P < 0.0001),0.43, and 0.45 vs. 0.33). Diets containing medium limestone size showed lighter yolk color than those containing fine and coarse particles (P˂0.05). Medium size of limestone significantly increased digestibility of DM compared to fine and coarse particles. In conclusion, productive performance of laying hens did not respond to limestone particle size, however, fine and medium sizes of limestone through enhancing effect on Ca digestibility, is more suitable than coarse particles for practical applications in young layers.

کلیدواژه‌ها [English]

  • limestone
  • phytase enzyme
  • particle size
  • laying hens
  • apparent digestibility of Ca
Angel, R., Tamim, N.M., Applegate, T.J., Dhandu, A.S., Ellestad, L.E. (2002). Phytic acid chemistry: influence on phytin-phosphorus availability and phytaseefficacy. Journal of Applied Poultry Research, 11, 471–480.
Anwar, M. N., Ravindran, V., Morel, P. C., Ravindran, G., & Cowieson, A. J. (2016). Apparent ileal digestibility of calcium in limestone for broiler chickens. Animal Feed Science and Technology, 213, 142-147.‏
Anwar, M. N., Ravindran, V., Morel, P. C. H., Ravindran, G., & Cowieson, A. J. (2017). Effect of calcium source and particle size on the true ileal digestibility and total tract retention of calcium in broiler chickens. Animal Feed Science and Technology, 214, 39-45.‏
Araujo, J. A. D., Silva, J. H. V. D., Costa, F. G. P., Sousa, J. M. B. D., Givisiez, P. E. N., & Sakomura, N. K. (2011). Effect of the levels of calcium and particle size of limestone on laying hens. Revista Brasileira de Zootecnia, 40, 997-1005.‏
Bradbury, E. J., Wikinson S. J., Cronin, C. L., & Walk, L. C. (2018). Effects of phytase, calcium source, calcium concentration, and particle size on broiler performance, nutrient digestibility, skeletal integrity. Animal Production Science, 58, 271-283.
Brister Jr, R. D., Linton, S. S., & Creger, C. R. (1981). Effects of dietary calcium sources and particle size on laying hen performance. Poultry Science, 60(12), 2648-2654.‏
Casartelli, E. M., Junqueira, O. M., Laurentiz, A. C. D., Filardi, R. D. S., Lucas Junior, J., & Araujo, L. F. (2005). Effect of phytase in laying hen diets with different phosphorus sources. Brazilian Journal of Poultry Science, 7, 93-98.‏
Champagne, E.T. (1988). Effects of pH on mineral-phytate: protein-mineral-phytate and mineral-fiber interactions. Possible consequences of atrophicgastritis on mineral bioavailability from high fiber foods. Journal of American College Nutrition, 7, 499–508.
Cheng, T. K., & Coon, C. N. (1990). Effect of calcium source, particle size, limestone solubility in vitro, and calcium intake level on layer bone status and performance. Poultry Science, 69(12), 2214-2219.‏
De Witt, F. H., Kuleile, N. P., Van Der Merwe, H. J., & Fair, M. D. (2009). Effect of limestone particle size on egg production and eggshell quality of hens during late production. South African Journal of Animal Science, 39(1), 37-40.‏
Fleming, R. H., McCormack, H. A., McTeir, L., & Whitehead, C. C. (2003). Effects of dietary particulate limestone, vitamin K3 and fluoride and photostimulation on skeletal morphology and osteoporosis in laying hens. British Poultry Science, 44(5), 683-689.‏
Francesch, M., Broz, J., & Brufau, J. (2005). Effects of an experimental phytase on performance, egg quality, tibia ash content and phosphorus bioavailability in laying hens fed on maize-or barley-based diets. British Poultry Science, 46(3), 340-348.‏
Guinotte, F., & Nys, Y. (1991). Effects of particle size and origin of calcium sources on eggshell quality and bone mineralization in egg laying hens. Poultry Science, 70(3), 583-592.‏
Guinotte, F., Gautron, J., Nys, Y., & Soumarmon, A. (1995). Calcium solubilization and retention in the gastrointestinal tract in chicks (Gallus domesticus) as a function of gastric acid secretion inhibition and of calcium carbonate particle size. British Journal of Nutrition,73, 125–139
Guyer, R. B., Grunder, A. A., Buss, E. G., & Clagett, C. O. (1980). Calcium-binding proteins in serum of chickens: vitellogenin and albumin. Poultry Science, 59(4), 874-879.‏‏
 Jing, M., Zhao, S.,Rogiewicz, A., Slominski, B. A., & House, J. D. (2021). Effects of phytase supplementation on production performance, egg and bone quality, plasma biochemistry and mineral excretion of layers fed varying levels of phosphorus. Animal, 15, 100010.
Kim, S-W., Li,W., Angel, R., & Proszkowiec-Weglarz, M. (2018). Effects of limestone particle size and dietary Ca concentration on apparent P and Ca digestibility in the presence or absence of phytase. Poultry Science, 97, 4306-4314.
Koreleski, J., & Swiatkiewicz, S. (2004). Calcium from limestone meal and grit in laying hen diets-effect on performance, eggshell and bone quality. Journal of Animal Feed Science and Technology, 13, 635–645.
Li, W., Angel, R., Plumstead, T. W., & Enting, H. (2021). Effects of limestone particle size, phytate, calcium source, and phytase on standardized ileal calcium and phosphorus digestibility in broilers. Poultry Science, 100, 900-909.
Majeed, S., Qudsieh, R., Edens, F. W., & Brake, J. (2020). Limestone particle size, calcium and phosphorus levels, and phytase effects on live performance and nutrients digestibility of broilers. Poultry Science, 99, 1502-1514.‏
Manangi, M. K., & Coon, C. N. (2007). The effect of calcium particle size and solubility on the utilization of phosphorus for broilers. International Journal of Poultry Science, 6, 85-90.
Mutucumarana, R. K., Ravindran, V., Ravindran, G., & Cowieson, A. J. (2014). Influence of Dietary Calcium Concentration on the Digestion of Nutrients along the Intestinal Tract of Broiler Chickens. Journal of Poultry Science, 51, 392-401.
Phirinyane, T. B., Van der Merwe, H. J., Hayes, J. P., & Moreki, J. C. (2011). Effect of different of ration of coarse and fine limestone particles on production and shell quality of layers at peak. Online Journal of Animal and Feed Research, 1(3), 86-91.‏
Pelicia, K., Garcia, E. A., Faitarone, A. B. G., Silva, A. P., Berto, D. A., Molino, A. B., & Vercese, F. (2009). Calcium and available phosphorus levels for laying hens in second production cycle. Brazilian Journal of Poultry Science, 11, 39-49.‏
Scott, M. L., Hull, S. J., & Mullenhoff, P. A. (1971). The calcium requirements of laying hens and effects of dietary oyster shell upon egg shell quality. Poultry Science, 50(4), 1055-1063.‏
Reid, B. L., & Weber, C. W. (1976). Calcium availability and trace mineral composition of feed grade calcium supplements. Poultry Science, 55(2), 600-605.‏
Safaa, H. M., Serrano, M. P., Valencia, D. G., Frikha, M., Jiménez-Moreno, E., & Mateos, G. G. (2008). Productive performance and egg quality of brown egg-laying hens in the late phase of production as influenced by level and source of calcium in the diet. Poultry Science, 87, 2043-2051.‏
Sell, P. H., Cowison, A. J., & Ravindran, V. (2009). Consequences of calcium interactions with phytate and phytase for poultry and pigs. Livestock Science, 124, 126-141.
Short, F., Gorton, P., Wiseman, J., & Boorman, K. (1996). Determination of titanium dioxide added as an inert marker in chicken digestibility studies. Animal Feed Science and Technology, 59(4), 215-221.
Skřivan, M., Marounek, M., Bubancova, I., & Podsedníček, M. (2010). Influence of limestone particle size on performance and egg quality in laying hens aged 24–36 weeks and 56–68 weeks. Animal Feed Science and Technology, 158, 110–114.
Tamim, N. M., Angel, R., & Christman, M. (2004). Influence of dietary calcium and phytase on phytate phosphorus hydrolysis in broiler chickens. Poultry Science, 83, 1358–1367.
 Walk, C. L., Romero, L. F., & Cowieson, A. J. (2021). Towards a digestible calcium system for broiler chicken nutrition: A review and recommendations for the future. Animal Feed Science and Technology, 276, 114930.
Wang, S., Chen, W., Zhang, H. X., Ruan, D., & Lin, Y. C. (2014). Influence of particle size and calcium source on production performance, egg quality, and bone parameters in laying ducks. Poultry Science, 93, 2560–2566.
WPSA, Working Group No 2 (Nutrition). (2013). Determination of phosphorus availability in poultry. World's Poultry Science Journal, 69, 687-698.
Zhang, B., & Coon, C. N. (1997). The relationship of calcium intake, source, size, solubility in vitro and in vivo, and gizzard limestone retention in laying hens. Poultry Science, 76(12), 1702-1706.