اثر پپتیدهای استخراج شده از کنجاله تخم آفتابگردان بر عملکرد، ویژگی‌های لاشه و فعالیت آنتی‌اکسیدانی در جوجه‌های گوشتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 'گروه علوم دامی، دانشکده علوم دامی و شیلات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران

2 گروه علوم دامی، دانشکده علوم دامی و شیلات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران

چکیده

این آزمایش به منظور بررسی اثر پپتیدهای استخراج‌ شده از کنجاله تخم ‌آفتابگردان بر عملکرد، ویژگی‌های لاشه و فعالیت آنتی‌اکسیدانی در جوجه گوشتی انجام شد. در این آزمایش از 200 قطعه جوجه گوشتی نر سویه راس 308 در قالب طرح کاملا تصادفی با 5 تیمار و 4 تکرار و 10 قطعه جوجه در هر تکرار،  به مدت 26 روز استفاده شد. تیمارهای آزمایشی شامل: 1) جیره شاهد بدون افزودنی 2) جیره‌ شاهد + 300 میلی‌گرم ویتامین ای در کیلوگرم جیره 3) جیره‌ شاهد + 250 میلی‌گرم پپتید استخراج ‌شده‌ از کنجاله تخم آفتابگردان در کیلوگرم جیره 4) جیره‌ شاهد + 500 میلی‌گرم پپتید استخراج ‌شده‌ از کنجاله تخم آفتابگردان در کیلوگرم جیره  5) جیره‌ شاهد + 1000 میلی‌گرم پپتید استخراج ‌شده‌ از کنجاله تخم آفتابگردان در کیلوگرم جیره بودند. از نظر مصرف خوراک و افزایش وزن در دوره‌ رشد ( 26-11 روزگی) و در کل دوره آزمایش (26-1 روزگی)، اختلاف معنی‌داری بین تیمارها مشاهده شد ( 05/0<  (P. بیشترین و کمترین مقدار مصرف خوراک و افزایش وزن، به ترتیب مربوط به تیمار 5 و تیمار شاهد بود. کمترین مقدار ضریب تبدیل خوراک در دوره‌ رشد و در کل دوره، مربوط به تیمار 5 ( به ترتیب37/1و 36/1) بود که با سایر تیمارها  اختلاف معنی‌داری داشت ) 05/0<(P. تاثیر تیمارهای آزمایشی بر درصد لاشه معنی‌دار بود ) 05/0<  (P. بیشترین درصد لاشه مربوط به تیمار 5 (3/73 درصد) و کمترین درصد لاشه مربوط به تیمار 2 (4/68 درصد) بود ) 05/0<  (P.  غلظت مالون‌دی‌آلدئید در گوشت سینه و ران در گروه‌های دریافت کننده‌ سطوح مختلف پپتید و تیمار 2 کمتر از تیمار شاهد بود. به طورکلی، نتایج این آزمایش نشان داد که استفاده از پپتیدهای زیست‌فعال استخراج شده از کنجاله تخم‌آفتابگردان، علاوه بر بهبود عملکرد، سبب افزایش کیفیت گوشت در مدت ذخیره‌سازی پس از کشتار از طریق کاهش اکسیداسیون چربی‌ها می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of extracted peptides from sunflower seed meal on performance, carcass characteristics, and antioxidant activity in broiler chickens

نویسندگان [English]

  • Hamid Ashkevar Ghorbani 1
  • Mansour Rezaei 2
  • Mohammad Kazemifard 2
1 Department of Animal Science, College of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
2 Department of Animal Science, College of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
چکیده [English]

This experiment was conducted to investigate the effect of extracted peptides from sunflower seed meal on performance, carcass characteristics, and antioxidant activity in broiler chickens. In this experiment, 200 Ross 308 male broiler chicks were used in a completely randomized design with five treatments, four replicates, and 10 chicks per each replicate, for 26 days. Experimental treatments included: 1) Control diet without any additives, 2) Control diet + 300 mg vitamin E per kg diet, 3) Control diet + 250 mg sunflower seed meal peptides per kg diet, 4) Control diet + 500 mg sunflower seed meal peptides per kg diet, 5) Control diet + 1000 mg sunflower seed meal peptides per kg diet. There were significant differences between treatments for feed conversion ratio and body weight gain in grower (days 11-26)and whole periods(days 1-26) of the experiment (p<0.05). The most, and least body weight gain belonged to treatment 5, and control treatment. Treatment 5 showed  least feed conversion ratio in grower and whole period (1.37 and 1.36) respectively (p<0.05). The effect of experimental treatments on carcass percentage was significan and highest carcass percentage belonged to treatment 5 (73.31%), and the lowest was observed in treatment 2 (68.37%) (p<0.05). The malondialdehyde concentration in breast and thigh meat treatments  received different levels of peptides and also treatment 2 was lower than the control treatment. In conclusion, results of the present experiment, showed that use of sunflower seed meal peptides have antioxidant activity and can improve performance, increase carcass quality, and meat stability during storaging through decreasing fat oxidation.  

کلیدواژه‌ها [English]

  • Bioactive peptides
  • broiler
  • performance
  • sunflower seed meal

Extended Abstract

Introduction

    In recent years, attention to use of new feed additives such as, bioactive peptides derived from animal or plant origin in poultry diets to enhance performance and meat stability has been  increased. There is not published data about effect of using bioactive sunflower seed meal peptides on broiler performance and antioxidant activity. Thus the aim of the present experiment was to investigate the effect of sunflower seed meal peptide on performance, carcass characteristics, antioxidant activity and breast and thigh meat storage stability in broiler chickens.

 

Meterials and Methods

    In this experiment a completely randomized design with200 Ross 308 male broiler chicks , five treatments, four replicates and 10 chicks per replicate was used Experimental treatments included: 1) Control diet without any additives 2) Control diet + 300 mg vitamin E per kg diet 3) Control diet + 250 mg sunflower seed meal peptides per kg diet 4) Control diet + 500 mg sunflower seed meal peptides per kg diet 5) Control diet + 1000 mg sunflower seed meal peptides per kg diet. Feed intake, body weight were measured in starter (days 1 to 10), grower (days 11 to 26), and whole period of the experiment (days 1 to 26) and feed conversion ratio was also calculated in these periods. On 26 days of age, one bird with body weight, close to the pen average body weight was selected from each replicate, was slaughtered and breast, thigh, abdominal fat and organ weight such as heart, spleen, liver, and pancreas, were measured. Samples from breast and thigh meat were taken and kept at -20°C to measure serum antioxidant activity. Ferric reducing antioxidant power (FRAP) was determined. Data of this experiment was analysed using  GLM procedure in SAS sowftware.  Differences between treatments mean was determined by Duncan,s multiple range test at p<0.05.

 

Results

    The lowest and highest  feed conversion ratio in grower and whole periods were observed in treatment 5 control treatments respectively. The higher and lower body weight gain belonged to treatment 5 and control group, respectively. The effect of experimental treatments on carcass percentage was significant (P<0.05). Teatments 3 and 4 showed higher carcass and breast percentage, which was significantly differed from the other treatments (P<0.05). The higher percentage of abdominal fat was observed in control group and treatment 5. Lowere glucose concentration was observed in treatments 1 and 5. Treatment 5 had higher triglycerides concentration which was significantly differed from the other treatments. The least cholesterol concentration belonged to treatments 4 and 5 (P<0.05). The least glutamic oxaloacetic transaminase value (aspartate aminotransferase), [GOT (AST)] was observed in treatment 3. Higher , and the lowere concentrations of low-density lipoprotein (LDL) belonged to cotrol, treatments 2 and 5 respectively. Higher very low density lipoprotein (VLDL) concentration was observed in treatment 5 (P<0.05) and  higher malondialdehyde (MDA) concentration was observed in control group, and lowere of that  was seen in treatments 2, 4 and 5 (P<0.05) respectively. The higher ferric reducing antioxidant power value belonged to treatment 5 and the lowere of that  related to the control and treatment 3.

 

Conclusion

     The results of the present study showed that, peptides extracted from sunflower seed meal have antioxidant activity and can improve the performance, carcass qualities in   and also  meat storage stability. Therefore, with the economical consideration , use of  sunflower seed meal peptidescan up to 1000 mg per kg broiler diet in whole period (1 to 26 days) is recommended.

Abdollahi, M.R., Zaefarian, F., Gu, Y., Xiao, W., Jia, J., & Ravindran, V. (2017). Influence of soybean bioactive peptides on growth performance, nutrient utilisation, digestive tract development and intestinal histology in broilers. Journal of Applied Animal Nutrition, (5), 1–7. https://doi.org/10.1017/JAN.2017.6.
Abdollahi, M.R., Zaefarian, F., Gu, Y., Xiao, W., Jia, J., & Ravindran, V. (2018). Influence of soybean bioactive peptides on performance, foot pad lesions and carcass characteristics in broilers. Journal of Applied Animal Nutrition, (6), 1–7. https://doi.org/10.1017/JAN.2018.1.
Alahyaribeik, S., & Nazarpour, M. (2022). Effects of bioactive peptides derived from feather keratin on small intestinal function, meat quality and performance of broiler chicks. Tropical Animal, Health and Production, 54(5):271. Doi: 10.1007/s11250-022-03244-1.
Aslam, S., Shukat, R., Issa-khan, M., & Shahid, M. (2020). Effect of dietary supplementation of bioactive peptides on antioxidant potential of broiler breast meat and physicochemical characteristics of nuggets. Food Science Animal Resour, 40(1), 55-73. https://doi.or10 .5851/kosfa.2019.e82.
Beaubier, S., Albe-Slabi, S. Aymes, A., Bianeis, M., Galet, O. & Kapel, R. (2021). A Rational Approach for the 12 12 - Production of Highly Soluble and Functional Sunflower Protein Hydrolysates. Foods. 10(3), 664. https://doi.org/10.3390/foods10030664
Benzie, I.F., & Strain, J.J. (1999). Ferric reducing antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in enzymology, (299)15-27. https://doi.org/10.1016/s0076-6879(99)99005-5
Botsoglou, N.A., Fletouris, D.J., Papageorgiou, G.E., Vassilopoulos, V.N., Mantis, A.J., & Trakatellis, A.G. (1994). Rapid, Sensitive, and Specific Thiobarbituric Acid Method for Measuring Lipid Peroxidation in Animal Tissue, Food, and Feedstuff Samples. Journal of Agricultural and Food Chemistry, 42 (9), 1931–1937. https://doi.org/10.1021/jf00045a019
Davignon, j., Jacob, R.F. & Mason, R.P. (2004).  The antioxidant effects of statins. Corn Artery dis,15(5), 251-258.  https://doi.org/ 10.1097/01.mca.0000131573.31966.34.
Feng, J., Liu, X., Xu, Z.R., Wang, Y.Z. & Liu, J.X. (2007). Effects of fermented soybean meal on digestive enzyme activities and intestina morphology in broilers. Poultry Science, 86(6), 1149-54. https://doi.org/ 10.1093/ps/86.6.1149.
.Friedwald.W.T. Leve, R.I., & Fredrichson, D.S.(1972). Estimation of concentration of low density lipoproteins separated by three different methods. Clinical chemistry, 18:499-502.
Gazwi, H.S.S., Mahmoud, M.E., & Toson, E.M.A. (2022).  Analysis of the phytochemicals of Coriandrum sativum and Cichorium intybus aqueous extracts and their biological effects on broiler chickens. Scientific reports, 12 (6399),
Hisham, R.I., Isono, H. & Miyata, T. (2018). Potential antioxidant bioactive peptides from camel milk proteins.  Journal of Animal Nutrition, 4(3), 273–280. https://doi.org/ 10. 1016/j.aninu.2018.05.004. Epub 2018 Jun 4.
Hou, Y., Wu, Z.H., Dai, Z.H., Wang, G. & Wu, G. (2017).  Protein hydrolysates in animal nutrition: industrial production, bioactive peptides, and functional significance. Journal of Animal Science Biotechnology, (8) 24. https://doi.org/ 10.1186/s40104-017-0153-9.
Ismail, I.B., Busadah, A.l- K.A., & El-Bahr, S.M. (2013). Oxidative stress biomarkers and biochemical profile in broilers chicken fed zinc bacitracin and ascorbic acid under hot climate.American Journal of Biochmistry and Molecular Biology,3(2).202-214. https: //doi .org / 10.3923/ajbmb.2013.202.214
Jin, Z., Yang, Y.X., Choi, J.Y., Shinde, P.L., Yoon, S.Y., Hahn, T.W., Lim, H.T., Park, Y., Hahm, K.S., Joo, J.W. & Chae, B.J. (2008). Potato (Solanum tuberosum L. cv. Golden valley) protein as a novel antimicrobial agent in weanling pigs. Journal of Animal Science, 86(7). 1562–1572. https://doi.org/ 10.2527/jas.2007-0414
Karimzadeh, S., Rezaei, M., & Teimouri Yansari, A. (2016).  Effects of canola bioactive peptides on performance, digestive enzyme activities, nutrient digestibility, intestinal morphology and gut microflora in broiler chickens. Poultry Science Journal, 4(1). 27–36
Khan, M.I., Shehzad, K., Arshad, M.S., Sahar, A., Shabbir, M.A. & Saeed, M. (2015). Impact of dietary 𝛼-lipoic acid on antioxidant potential of broiler thigh meat. Journal of Chemistry, (2015). 1-9 https://doi.org/10.1155/2015/406894
Kim, I.L.S., Yang, w.s. & Kim, C.H. (2021).  Beneficial effects of soybean-derived bioactive peptides. International Journal of Molecular Sciences, 22(16). 1-23. https://doi.org. / 10. 3390/ijms22168570
Landy, N., Kheiri, F. & Faghani, M. (2020). Evaluation of cottonseed bioactive peptides on growth performance, carcase traits, immunity, total antioxidant activity of serum and intestinal morphology in broiler­­ chickens. Italian Journal of Animal Science, 19(1), 1375-1386. https://doi.org.1080/1828051 X.2020.1844085
Landy, N., Kheiri, F. & Faghani, M. (2021). Effects of periodical application of bioactive peptides derived from cottonseed on performance, immunity, total antioxidant activity ofserum and intestinal development of broilers. Animal Nutrition, 7(1).134-141. https: //doi. org. 10.1016/j.aninu.2020.06.008.
Luna, A., Labaque, M.C., Zygadlo, J.A., & Marin, R.H. (2010). Effects of thymol and carvacrol feed supplementation on lipid oxidation in broilermmeat. Poultry Science, 89(2).366-70. https://doi.org. 10.3382/ps.2009-00130
Mateos, G.G., Mohiti-Asli, M., Borda, E., Mirzaie, S. & Frikha, M. (2014). Effect of inclusion of porcine mucosa hydrolysate in diets varying in lysine content on growth performance and ileal histomorphology of broilers. Animal Feed Science and Technology, (187). 53–60. https://doi.org. /10 .1016/j.anifeedsci.2013.09.013
Mathivanan, R., Selvaraj, P. & Nanjappan, K. (2006). Feeding of fermented soybean meal on broiler performance. International Journal of Poultry Science, 9(5), 868-872. https://doi.org .10.3923/ijps. 2006 .868 .8 72
Mazur-Kusnirek, M., Antoszkiewicz, Z., Lipinski, K., Kaliniewicz, J. & Kotlarczyk, S. )2019(. The effect of polyphenols and vitamin E on the antioxidant status and meat quality of broiler chickens fed low-quality oil. onArchives of Animal Breeding, 62(1). 287–296. https://doi .org.  10.5194/aab-62-287-2019
Meisel, H. (2007). Food-derived bioactive proteins & peptides as potential components of nutraceuticals. Current Pharmaceutical, 9(13).873-874 https://doi.org. 10.2174/ 13816 1207780 41 4250
Mohammad Rezaei, M., Navidshad, B. & Kayseri, A. (2019). The effect of different levels of bioactive peptides of cottonseed meal on production efficiency and serum antioxidant activity of broiler chickens. Animal Production Research, 11(30), 83-91.  (In Persian).
Muir, W.I., Lynch, G.W., Williamson, P. & Cowieson, A.J.  (2013). The oral administration of meat and bone meal-derived protein fractions improved the performance of young broiler chicks. Animal Production Science, 53(5). 369-377 https: //doi.org./10.1071/AN12209
Muthukumar, M., Naveena, B.M., Vaithiyanathan, S., Sen, A.R., & Sureshkumar, K. (2014). Effect of incorporation of Moringa oleifera leaves extract on quality of ground pork patties. Journal of Food Science and Technology, 51(11).3172-80. https://doi.org. 10.1007/s13197-012-0831-8.
Mazur-Kusnirek, M., Antoszkiewicz, Z, Lipinski, K., Kaliniewicz, J. & Kotlarczyk, S. )2019(. The effect of polyphenols and vitamin E on the antioxidant status and meat quality of broiler chickens fed low-quality oil. Archives Animal Breeding, 62(1). 287–296 https: //doi. org. 10.5194/aab-62-287-2019
Nagaoka, S., Takeuchi, A. & Banno, A. (2021).  Plant-derived peptides improving lipid and glucose metabolism. Science Direct, 6(142). 170577. https://doi.org. 10.1016/j.peptides .202 1.170577.
Naveena, B.M., Sen, A.R., Vaithiyanathan, S., Babji, Y. & Kondaiah, N. (2008). Comparative efficacy of pomegranate juice, pomegranate rind powder extract and BHT as antioxidants in cooked chicken patties. Meat Science, 80(4).1304-8. https://doi.org. 10.1016/j.meatsci .2008.06.005.
O’Sullivan, C.M., Lynch, A.M., Lynch, P.B., Buckley, D.J. & Kerry J.P. (2004). Use of antioxidants in chicken nuggets manufactured with and without the use of salt and/or sodium tripolyphosphate: Effects on product quality and shelf-life stability. International Journal of Poultry Science ,3(5). 345-353. https://doi.org. 10.3923/ijps.2004.345.353
Osho, S.O., Xiao, W.W. & Adeola, O. (2019). Response of broiler chickens to dietary soybean bioactive peptide and coccidia challenge. Poultry Science, 98(11):5669-5678. https://doi.org.10.3382/ps/pez346.
Osman, A., Goda, H.A., Abdel-Hamid, M., Badran, SM. & Otte, J. (2016). Antibacterial peptides generated by Alcalse hydrolysis of goat whey. Lwt - Food Science and Technology, (65) 480–486.  https://doi.org.10.1016/J.LWT.2015.08.043
Power, O., Jakeman, P. & FitzGerald, R.J. (2013). Antioxidative peptides: enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidative peptides. Amino Acids, 4(3).797-820. https://doi.org. 10.1007/s00726-012-1393-9.
Ross, (2014). Ross 308 broiler: Nutrition Specification, Ross Breeders Limited, Newbridge, Midlothian, Scotland, UK.
Saleh, H., Gollian, A., Kermanshahi, H., Mirkazehi, M.T. & Aghah, M.J. (2014). Effects of natural antioxidants on immune system response, antioxidant enzymes and blood indices of broilers. Iranian Veterinary Journal, 11(3), 67-79. (In Persian).
Shahsavari, G., Toulabi, A. & Raofi, A. (2013). Evaluation of serum levels of malondialdehyde and total antioxidant capacity after taking atrostatin in patients with coronary artery occlusion. Scientific Research Quarterly of Lorestan University of Medical Sciences, 16(4), 18-26. (In Persian).
Sørum, H. & Sunde, M. (2001). Resistence to antibiotics in the normal flora of animals. Veterinary Research, 32(3-4).227-41. https://doi.org. 10.1051/vetres: 2001121.
Tang, Z., Yin, Y., Zhang, Y., Huang, R., Sun, Z., Li, T., Chu, W., Kong, X., Li, L., Geng, M. & Tu, Q. (2009).  Effects of dietary supplementation with an expressed fusion peptide bovine lactoferricin- lactoferrampin on performance, immune function and intestinal mucosal morphology in piglets weaned at age 21 d. The British Journal of Nutrition, 101(7).998-1005. https://doi.org. 10.1017 /S0 0 07114508055633
Wald, M., Schwarz, K., Rehbein, H., Bußmann, B. & Beermann, C. (2016). Detection of antibacterial activity of an enzymatic hydrolysate generated by processing rainbow trout byproducts with trout pepsin. Food Chemistry, (205). 221–228. https://doi.org ./10.1016/j .foodchem.2016.03.002
Wan, X.L., Song, Z.H., Niu, Y., Cheng, K., Zhang, J.F., Ahmad, H., Zhang, L.L., & Wang, T. (2017).  Evaluation of enzymatically treated Artemisia annua L. on growth performance, meat quality, and oxidative stability of breast and thigh muscles in broilers. Poultry Science, 96(4):844-850.https://doi.org. 10.3382/ps/pew307
Wang, L.C., Wen, C., Jiang, Z.Y. & Zhou, Y.M.  (2012). Evaluation of the partial replacement of highprotein feedstuff with fermented soybean meal in broiler diets. Journal of Applied Poultry Research, 4(21), 849-855. https://doi.org./10.3382/japr.2012-00563
Wen, L.F. & He, J.G. (2012). Dose – response effects of an antimicrobial peptide, a cecropin hybrid, on growth performance, nutrient utilization, and bacterial counts in the digesta and intestinal morphology in broilers. The British Journal of Nutrition, 28; 108(10).1756-63. https://doi.org. 10.101 7/S0007114511007240.
W.H.O/ F.A.O /U.N.U., (2007). Protein & Amino Acid Requirements in Human Nutrition; World Health Organization Technical Report Series, (935):1-265.
Wildermuth, S.R., Young, E.E., Were, L.M. (2016). Chlorogenic acid oxidation & its reaction with sunflower proteins to form green-colored complexes. Comprehensive Reviews in Food Science and Food Safety. 5 (15) 829–843. https://doi.org/10.1111/1541-4337.12213
Young, J.F., Stagsted, J., Jensen, S.K., Karlsson, A.H. & Henckel, P. (2003). Ascorbic acid, alpha-tocopherol, and oregano supplements reduce stress-induced deterioration of chicken meat quality. Poultry Science, 82(8).1343-51. https://doi.org. 10.1093/ps/82.8.1343
Zahid, M.A., Seo, J.K., Park, J.Y., Jeon, J.Y., Jin, S.K., Park, T.S. & Yang, H.S. (2018). The effects of natural antioxidants on protein oxidation, lipid oxidation, color, and sensory attributes of beef patties during cold storage at 4℃. Korean Journal for Food Science Animal Resources, 8(5).1029-1042. https://doi.org. 10.5851/kosfa. 2018. e36