ارزیابی فراوانی آللی مطلوب ژن عمده تحت تداخل و نبود تداخل نسل: مطالعهای مبتنی بر شبیهسازی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه کردستان، کردستان، ایران

2 گروه علوم دامی، واحد آستارا ، دانشگاه آزاد اسلامی، آستارا، ایران

چکیده

یکی از صفات مهم اقتصادی در گوسفند چندقلوزایی می­باشد. این صفت تحت تأثیر بعضی از ژن ها با اثر بزرگ می­باشد. هدف از مطالعه حاضر ارزیابی انواع طرح­های انتخابی برای تثبیت آللی مطلوب ژن عمده در صفت چندقلوزایی تحت سناریوهای تداخل و نبود تداخل نسل بود. بدین منظور یک صفت چندقلوزایی با وراثت­پذیری 1/0، متشکل از 26 کروموزوم و یک ژن عمده در جمعیت گوسفند شبیه­سازی شد. ارزش اصلاحی حیوانات با استفاده از مدل آستانه­ای بیزی پیش­بینی شد. انتخاب حیوانات بر اساس ارزش اصلاحی (EBV)، فنوتیپی برتر (PHEN) و تصادفی (RND) بود. پیشرفت ژنتیکی بعد از ده نسل انتخاب در طرح­های انتخابی EBV، PHEN و RND تحت سناریوی نبود تداخل نسل نسبت به سناریوی وجود تداخل نسل، به ترتیب 8، 23 و 26 درصد بیشتر بود. صحت ارزیابی در سناریوی تداخل نسل در مقایسه با سناریوی نبود تداخل نسل بیشتر بود. میانگین ضریب همخونی بعد از ده نسل انتخاب در سناریوی تداخل نسل برای طرح­های انتخابیEBV، PHEN و RND به ترتیب 317/0، 029/0 و 027/0 و  برای سناریوی نبود تداخل نسل به ترتیب 327/0، 058/0 و 056/0 بود. در سناریوی نبود تداخل نسل فراوانی آللی مطلوب در طرح­های انتخابی EBV، PHEN و RND به ترتیب یک، 46 و 38 درصد نسبت به سناریوی تداخل نسل بیشتر بود. نتایج نشان داد که سناریوی نبود تداخل نسل با استفاده از طرح­ انتخابی EBV منجر به تثبیت آللی مطلوب ژن عمده و پیشرفت ژنتیکی بیشتری ­می­شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of frequency of the favorable allele of major gene under overlapping and discrete generation: A study based on simulation

نویسندگان [English]

  • Maysam Latifi 1
  • Yousef Naderi 2
1 Collage of Agriculture, Department of Animal Science, University of Kurdistan, Kurdistan, Iran.
2 Department of Animal Science, Astara Branch, Islamic Azad University, Astara, Iran
چکیده [English]

Litter size (LS) is one of the important economic traits in sheep . This trait is influenced by some genes with a large effect. The purpose of this simulation study was to evaluate the fixation selection designs for favorable major gene allele under scenarios of overlapping and discrete generations. In this regard, a trait with heritability of 0.1, and a genome with 26 chromosomes and a major gene was simulated in sheep population. Animals breeding value was predicted using Bayesian threshold model. Selection of animals was based on estimated breeding value (EBV), phenotype (PHEN) and random (RND). After ten generations, genetic gain in selection based on EBV, PHEN and RND under scenario of discrete generation were 8, 23 and 26 percent higher than those in scenario of overlapping generation, respectively. The accuracy of prediction in scenario of discrete generation was higher than scenario of overlapping generation. Means of inbreeding coefficient under scenario of overlapping generation and selection for EBV, PHEN and RND were 0.317, 0.029 and 0.027, respectively, and for scenario of discrete generation were 0.327, 0.058 and 0.056, respectively. In generation ten, the favorable allele of the major gene, in scenario of discrete generation selection based on EBV, PHEN and RND was 1, 46 and 38 percent higher than those in the scenario of overlapping generation, respectively. The results indicated that the scenario of discrete generation selection based on EBV leads to more fixation the favorable allele of the major gene and of genetic gain.

کلیدواژه‌ها [English]

  • Selection designs
  • Genetic gain
  • Accuracy of prediction

Extended Abstract

Introduction

Choosing an appropriate selection strategy for genetic enhancement and stabilizing of a favorite major gene`s allele is very important. Objective of this research was to evaluate the fixation selection designs for favorable major gene allele related to multiple births  trait under scenarios of overlapping and discrete generations using simulation in a sheep population. Selection scenarios were based on random selection (RND, estimated breeding value (EBV), and, phenotype (PHEN) . Genetic progress, evaluation accuracies, inbreeding rate, and the frequency of the desired allele were evaluated and compared after ten generations of selection in two scenarios.

 

Materials and methods

QMSim software (Sargolzaei & Schenkel, 2009) was used to simulate a sheep population. First, a historical population with an effective size of 1000 animals, including 500 male and 500 female was created. These animals were randomly mated for 1000 generations. Then, from the last generation of the historical population, 50 male and 500 female were selected based on estimated breeding value (EBV), phenotypic value (PHEN) and random (RND) and crossed for ten generations. Next, a sex-limited trait with heritability of 0.1 and a genome consisting of 26 chromosomes, each with the length of one Morgan. was simulated. It assumed that 60% of the additive genetic variance of this trait was polygenic and the remaining 40% was assigned to a QTL. This QTL was assigned as a major gene on one of the chromosomes. QTL effect was simulated from gamma distribution with parameter 0.4 and phenotypic variance of the one. The initial frequency of the desired allele of this major gene (QTL) in the zero generation was considered to be 0.1. Two selection scenarios of overlapping and discrete generations were applied to  investigate the effect of selection programs on increasing desired allele  frequency, genetic progress and average inbreeding rate after ten generations of selection. Furthermore, 20% of the above phenotypes were considered as twin and the remaining 80% as single birth in order to create the threshold phenotypes for this  trait.                                                                

 

Results and discussion             

The genetic improvement based on EBV, PHEN and RND in the scenario of no generation interference was 8, 23 and 26% higher than corresponding values in the generation interference scenario.  The accuracy of the evaluation in the generation interference and the absence of generation interference scenarios for the EBV, PHEN, and RND selected design were 0.87, 0.66, and 0.54, and 0.89, 0.69, and 0.55, respectively. With increasing selection intensity, the evaluation accuracy increased in both scenarios. According to the results of this research, if the goal is to increase the desired frequency of the major gene in native breeds, it is suggested to use the scenario of no generation interference and EBV selection plan to stabilize the desired allelic frequency of the major gene. The average inbreeding coefficient in the selected designs of EBV, PHEN and RND in the scenario of no generation interference were higher by 0.01, 0.023 and 0.029, respectively, compared to the generation interference scenario. In case of generation interference, parents are selected from different generations, and as a result, the structure of the pedigree becomes more heterogeneous, thus reducing inbreeding.                                                                                                                                                              

 

Conclusion

The results of current study showed that the scenario of no generation interference leads to an increase in genetic gain, evaluation accuracy, desired allele the frequency of  major gene, and inbreeding in the EBV, PHEN and RND selection designs compared to the generation interference scenario. Hence, when aiming to stabilize the desired allele of the major gene influencing the multiple births trait in native breeds, it is recommended to use the scenario without generational interference, employing selection scheme based on EBV.

Asadpour, R., Jafari-Joozani, R., Alijani, S. & Mahmodi, H.(2012). Detection of polymorphism in booroola gene (FecB) and its association with litter size in Zel sheep breed in Iran. Slovak Journal of Animal Science, 45, 63-66.
Bodin, L., Martin, P. M. & Raoul, J. (2014). Effects of the FecL Major Gene on Mean and Variance of Litter Size in the Lacaune Meat Sheep Population. Proceedings, 10th World Congress of Genetics Applied to Livestock Production, Vancouver, Canada.
Brisbane, J.R & Gibson, P. J. (1995). Balancing selection response and rate of inbreeding by including genetic relationships in selection decisions. Theoretical and Applied Genetics, 91, 421–431.
Clark, S.A., Hickey, J.M., Daetwyler, H.D & van der Werf, J.H. (2012). The importance of information on relatives for the prediction of genomic breeding values and the implications for the makeup of reference data sets in livestock breeding schemes. Genetics Selection Evolution, 44:4.
Drouilhet, L., Lecerf, F., Bodin, L., Fabre, S. & Mulsant, P. (2009). Fine mapping of the FecL locus influencing prolificacy in Lacaune sheep. Animal Genetics, 40, 804–812.
Elsen, J. M., Bodin, L., Francois, D.,Poivey, J. P. & Teyssier, J. (1994). Genetic improvement of litter size in sheep, Proceedings of the 5th World Congress on Genetics Applied to Livestock Production, 237-244 pp., Guelph, Ontario, Canada.
Enayati, B.,Rashidi, A., Abdollahi-Arpanahi, R. & Razmkabir, M. (2019). The evaluation of breeding strategies in Mazandaran native fowls using computer simulation. Iranian Journal of Animal Science, 49(4), 481-494. (In Farsi)
Eteqadi, B., GhaviHossein-Zadeh, N. & Shadparvar, A. A. (2017). Genetic analysis of basic and composite reproduction traits in Guilan sheep. Annals of Animal Science, 17, 105-116.
Falconer, D.C and Mc Kay, T. F C. (2004). Introduction toQuantitative Genetics. Addison WesleyLongman (Pearson Education).
Hadfield, J.D & Nakagaw, S. (2010). General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. Journal of Evolutionary Biology, 23, 494-508.
Latifi, M., Rashidi, A., Abdollahi-Arpanahi, R. & Razmkabir, M. (2020). Comparison of different selection methods for improving litter size in sheep using computer simulation. Spanish Journal of Agricultural Research, 18(1), e0403.
Latifi, M., Alijani, S.,Taghizadeh, A. & Moghaddam, Gh. (2013). Comparison of different models to estimate of genetic parameters of litter size by Bayesian method in the Mehrabani sheep. Journal of Ruminant Researches, 1(1), 1-11.(In Farsi)
Mahdavi, M., Nanekarani, S. & Hosseini, S.D. (2014). Mutation in BMPR-IB gene is associated with litter size in Iranian Kalehkoohi sheep. Animal Reproduction Science, 147, 93-98.
Mokhtari, M.S., Rashidi, A. & Esmailizadeh, A. K. (2010). Estimates of phenotypic and genetic parameters for reproductive traits in Kermani sheep. Small Ruminant Research, 88, 27-31.
Naderi, Y. & Latifi, M. (2019). Effect of mating designs on genetic gain and Increase of average inbreeding: A simulation study. Iranian Journal of Animal Science, 50(2), 115-120. (In Farsi)
Nirea, K.G., Sonesson, A. K.,Woolliams, J.A. & Meuwissen, T.H. (2012). Effect of non-random mating on genomic and BLUP selection schemes. Genetics Selection Evolution, 44, 11.
Pedersen, L.D., Sørensen, A.C. & Berg, P. (2009). Marker-assisted selection can reduce true as well as pedigree-estimated inbreeding. Journal of Dairy Science, 92, 2214–2223.
Salehi, A., Rostami, F & Bakhtiari Zadeh, M.R. (2022). Study of B4GALNT2 (FecL) gene mutation by using High Resolution Melting (HRM) technique in Zandi sheep. Iranian Genetics Society, 17 (1): 87-90.
Sargolzaei, M & Schenkel, F.S. (2009). QMSim: a large scale genome simulator for livestock. Bioinformatics, 25, 680-681.
Sonesson, A & Meuwissen, T. (2002). Non-random mating for selection with restricted rates of: inbreeding and overlapping generations. Genetics Selection Evolution, 34(1), 23-39.
Vinet, A., Drouilhet, L., Bodin, L., Mulsant, P., Fabre, S. & Phocas, F. (2012). Genetic control of multiple births in low ovulating mammalian species. Mammalian Genome, 23, 727-740.
Hadfield, J.D & Nakagaw, S. (2010). General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. Journal of Evolutionary Biology, 23, 494-508.