مطالعه بیان افتراقی ژن‌های مرتبط با باروری در بافت جسم زرد گاو نژاد هلشتاین با استفاده از داده‌های RNA-Seq

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم دامی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

چکیده

صفت باروری بعنوان عامل اصلی برای تداوم سودآوری در مزارع گاو شیرده محسوب می‌شود. پژوهش حاضر، به منظور تعیین ژن‌های بیان شده افتراقی در باروری گاو نژاد هلشتاین با استفاده از داده‌های ترانسکریپتوم صورت گرفت. بدین منظور، در مجموع نمونه بافت جسم زرد 18 رأس گاو نژاد هلشتاین با نوبت زایش 2 به بالا که به‌صورت ترکیب شد(Pooling)  در دو گروه با باروری زیاد و باروری کم هر کدام در سه تکرار بیولوژیک تقسیم‌بندی شده بودند استفاده شد. تمامی مراحل آماده‌سازی توالی‌های خام و تجزیه و تحلیل آن‌ها در پلتفرم گالاکسی نسخه 01/22 انجام شد و متعاقباً، هستی‌شناسی ژن با استفاده از پایگاه داده DAVID نسخه 2021 صورت پذیرفت. در نهایت، نتایج آنالیز بیان افتراقی ژن در بافت جسم زرد نشان داد که از 13049 رونوشت ترانسکریپتومی بیان شده، 19 ژن به‌عنوان ترانسکریپتوم‌های شاخص عمل کرده‌اند (q-   value≤0.05).  همچنین، ژن‌های UBE3B، NIF3L1 و ORC2 سه ژن شاخص عملکردی بودند که مقدار بیان بیشتری در جسم زرد گاوهای با باروری زیاد داشتند. ژن UBE3B در فرآیند‌های بیولوژیک به‌عنوان پروتئین درگیر در فرآیند کاتابولیک پروتئین وابسته به یوبیکوئیتین است. در جهت تفسیر بیشتر نتایج، ژن NIF3L1 در فرایند بیولوژیک تمایز نورون، تنظیم مثبت رونویسی، الگوی DNA، تنظیم منفی رونویسی با الگوی اسید نوکلئیک، نقش دارد. همچنین، ژن ORC2 در فرایند بیولوژیک همانندسازی DNA نقش بازی می‌کند. ژن‌های KRT8، PHLDB3، PPT2، LOC787628، PPYR1، TOX، TP73، DHX8، KCNN1، CLEC6A، PXMP4، LRRC26، SLC34A3 و OR13C7 در گاوهای با باروری کم، مقدار بیان بیشتری در جسم زرد نشان داده است. سه ژن PPT2‏‏‌،‏ PPYR1 و CLEC6A جزو ژن‌های شاخص محسوب می‌شوند. به عنوان نتیجه گیری کلی، جایگاه‌های UBE3B، NIF3L1 و ORC2 که مقدار بیان بیشتری در جسم زرد گاوهای با باروری زیاد داشتند می‌توانند بعنوان ژن‌های شاخص عملکردی در انتخاب ژنتیکی گاوهای شیری مورد استفاده قرار گیرند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study of differential gene expression of Holstein cow’s fertility in corpus luteum using RNA-Seq data

نویسندگان [English]

  • Ghorban Elyasi Zarringhabaie
  • Mostafa Sadeghi
  • Seyed Reza Miraie Ashtiani
Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
چکیده [English]

The fertility of female cows is the main factor for the survival of dairy farming. This study was performed to determine the differentially expressed genes in fertility in Holstein cows using phenotypic data and next-generation sequencing (NGS) technology. Corpus luteum samples from 18 Holstein cows at up to two parturitions were used in two high and low fertility groups, three samples from each group were pooled together and a total of three biological samples from each were submitted for whole genome sequencing. The preparation and analysis steps were performed on the Galaxy 22.01 platform. DAVID (2021) database were used for gene ontology. The results of differential gene expression analysis in luteal tissue showed that 19 genes out of 13049 expressed transcripts had a significant difference in expression between high and low-fertility cows with an FDR-adjusted p-value (q-value) of less than 0.05. UBE3B, NIF3L1 and ORC2 genes were three functional marker genes that were more highly expressed in the corpus luteum of high-fertility cows. The UBE3B gene is involved in biological processes as a protein involved in the catabolic process of ubiquitin-dependent protein. NIF3L1 is involved in the biological process of neuronal differentiation, positive transcriptional regulation, DNA pattern, and negative transcriptional regulation by nucleic acid pattern. The ORC2 gene plays a role in the biological process of DNA replication. The genes KRT8, PHLDB3, PPT2, LOC787628, PPYR1, TOX, TP73, DHX8, KCNN1, CLEC6A, PXMP4, LRRC26, SLC34A3, and OR13C7 have been shown to be more highly expressed in the corpus luteum in low fertility cows. Among these genes, three genes PPT2, PPYR1 and CLEC6A were functional indicators. The loci UBE3B, NIF3L1 and ORC2, which were expressed more strongly in the corpus luteum of highly fertile cows, can be used as functional indicator genes in the genetic selection of dairy cows.

کلیدواژه‌ها [English]

  • Alignment
  • Galaxy
  • Holstein
  • Ontology
  • Transcriptome

Extended Abstract

Objective

 The fertility of female cows is the main factor for the survival of dairy farming. The interval between calvings and the response to the first insemination are used as the most important fertility traits. Infertility and low fertility are important and widespread problems in domestic animals, and the main limitation of reproductive efficiency in mammalian species is embryonic mortality. This study was performed to determine the differentially expressed genes in fertility in Holstein cows using phenotypic data and next-generation sequencing (NGS) technology.

 

Materials and Methods

     Corpus luteum samples from 18 Holstein cows at up to two parturitions were used in two high and low fertility groups, three samples from each group were pooled together and a total of three biological samples from each were submitted for whole genome sequencing. RNA sequencing was performed with Illumina Hiseq 2500 using paired-end reads, each read being 75 bp in length. The preparation and analysis steps were performed on the Galaxy platform. Quality control was performed with Galaxy FastQC. For low-quality samples, the Trimmomatic software was used to remove substandard samples. HISAT2 software was used to match the transcriptome reads to the cow reference genome. After mapping the transcripts to the reference genome, the expression level of each transcript was counted using the featureCounts softwar. Differential gene expression analysis was used for two treatment groups using DESeq2. Gene ontology using the DAVID database was performed for genes that showed significantly different expressions between the two treatments. 

 

Results

     Results from the Trimmomatic software showed that only 0.87% of the data was deleted and approximately 99.13% of the raw data was used for mapping to the reference genome. The results of the alignment showed that 93.48% of the transcriptome sequence mapped to the reference genome, 90.58% to one site, and only 2.90% to more than one site. The results of differential gene expression analysis in luteal tissue showed that 19 genes out of 13049 expressed transcripts had a significant difference in expression between high and low-fertility cows with an FDR-adjusted p-value (q-value) of less than 0.05. UBE3B, NIF3L1 and ORC2 genes were three functional marker genes that were more highly expressed in the corpus luteum of high-fertility cows. The UBE3B gene is involved in biological processes as a protein involved in the catabolic process of ubiquitin-dependent protein. NIF3L1 is involved in the biological process of neuronal differentiation, positive transcriptional regulation, DNA pattern, and negative transcriptional regulation by nucleic acid pattern. The ORC2 gene plays a role in the biological process of DNA replication. The genes KRT8, PHLDB3, PPT2, LOC787628, PPYR1, TOX, TP73, DHX8, KCNN1, CLEC6A, PXMP4, LRRC26, SLC34A3, and OR13C7 have been shown to be more highly expressed in the corpus luteum in low fertility cows. Among these genes, three genes PPT2, PPYR1 and CLEC6A were functional indicators. The PPT2 gene is responsible for the removal of palmitoyl groups from a macromolecule, the PPYR1 gene is involved in the biological process of cell surface receptor signaling pathway, neuropeptide signaling pathway, nutritional behavior and blood circulation and the CLC34A3 gene plays a role in the biological process of cellular phosphate ion homeostasis.

 

Conclusion

    the loci UBE3B, NIF3L1 and ORC2, which were expressed more strongly in the corpus luteum of highly fertile cows, can be used as functional indicator genes in the genetic selection of dairy cows.

Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc
Attari, M., Moradi Shahrbabak, H., Nehzati Paghale, G., Banabazi, M. H. & Hashemi, M. (2019). Study of differential gene expression in queen, drone and worker honey bee using RNA-seq data. Iranian Journal of Animal Science, 50(2), 103-113. doi: 10.22059/ijas.2019.257296.653635 (In Persian)
Barbat, A., Le Mézec, P., Ducrocq, V., Mattalia, S., Fritz, S., Boichard, D. & Humblot, P. (2010). Female fertility in French dairy breeds: current situation and strategies for improvement. Journal of Reproduction and Development, 56(S), S15-S21. https://doi.org/10.1262/jrd.1056S15
Blankenberg, D., Gordon, A., Von Kuster, G., Coraor, N., Taylor, J., Nekrutenko, A. & Team, G. (2010). Manipulation of FASTQ data with Galaxy. Bioinformatics, 26(14), 1783-1785. https://doi.org/10.1093/bioinformatics/btq281
Bolger, A. M., Lohse, M. & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
Cai, Z., Guldbrandtsen, B., Lund, M. S. & Sahana, G. (2019). Prioritizing candidate genes for fertility in dairy cows using gene-based analysis, functional annotation and differential gene expression. BMC Genomics, 20(1), 1-9. https://doi.org/10.1186/s12864-019-5638-9
Chen, H. Y., Shen, H., Jia, B., Zhang, Y. S., Wang, X. H. & Zeng, X. C. (2015). Differential gene expression in ovaries of Qira black sheep and Hetian sheep using RNA-Seq technique. PloS One, 10(3), e0120170. https://doi.org/10.1371/journal.pone.0120170
Dennis, G., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C. & Lempicki, R. A. (2003). DAVID: database for annotation, visualization, and integrated discovery. Genome Biology, 4(9), R60. https://doi.org/10.1186/gb-2003-4-9-r60
Ghafouri, F., Sadeghi, M., Bahrami, A., Abdollahi-Arpanahi, R., Javanmard, A. & Miraei-Ashtiani, S. R. (2022). Comparison of differential expression profiles of candidate genes related to fertility traits using transcriptome perspective based on RNA-Seq in Holstein dairy cows. Iranian Journal of Animal Science, 52(4), 217-229. https://doi.org/10.22059/ijas.2021.322630.653824 (In Persian)
Gonella-Diaza, A. M., da Silva Andrade, S. C., Sponchiado, M., Pugliesi, G., Mesquita, F. S., Van Hoeck, V. & Binelli, M. (2017). Oviductal transcriptional profiling of a bovine fertility model by next-generation sequencing. Genomics Data, 13, 27-29. https://doi.org/10.1016/j.gdata.2017.06.004
Huang, D. W., Sherman, B. T. & Lempicki, R. A. (2008). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4(1), 44. https://doi.org/10.1038/nprot.2008.211
Killeen, A. P., Diskin, M. G., Morris, D. G., Kenny, D. A. & Waters, S. M. (2016). Endometrial gene expression in high-and low-fertility heifers in the late luteal phase of the estrous cycle and a comparison with midluteal gene expression. Physiological Genomics, 48(4), 306-319. https://doi.org/10.1152/physiolgenomics.00042.2015
Kim, D., Langmead, B. & Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12(4), 357-360. https://doi.org/10.1038/nmeth.3317
Liao, Y., Smyth, G. K. & Shi, W. (2014). FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30(7), 923-930. https://doi.org/10.1093/bioinformatics/btt656
Love, M. I., Huber, W. & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 1-21. https://doi.org/10.1186/s13059-014-0550-8
Merchant, S., Wood, D. E. & Salzberg, S. L. (2014). Unexpected cross-species contamination in genome sequencing projects. PeerJ, 2, e675. https://doi.org/10.7717/peerj.675
Minten, M. A., Bilby, T. R., Bruno, R. G., Allen, C. C., Madsen, C. A., Wang, Z. & Geary, T. W. (2013). Effects of fertility on gene expression and function of the bovine endometrium. PloS One, 8(8), e69444. https://doi.org/10.1371/journal.pone.0069444
Moore, S. G., Pryce, J. E., Hayes, B. J., Chamberlain, A. J., Kemper, K. E., Berry, D. P. & Fair, T. (2016). Differentially expressed genes in endometrium and corpus luteum of Holstein cows selected for high and low fertility are enriched for sequence variants associated with fertility. Biology of Reproduction, 94(1), 1-11. https://doi.org/10.1095/biolreprod.115.132951
Moran, B., Butler, S. T., Moore, S. G., MacHugh, D. E. & Creevey, C. J. (2017). Differential gene expression in the endometrium reveals cytoskeletal and immunological genes in lactating dairy cows genetically divergent for fertility traits. Reproduction, Fertility and Development, 29(2), 274-282. https://doi.org/10.1071/RD15128
Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5(7), 621-628. https://doi.org/10.1071/RD15128
Nayeri, S., Sargolzaei, M., Abo-Ismail, M. K., May, N., Miller, S. P., Schenkel, F. & Stothard, P. (2016). Genome-wide association for milk production and female fertility traits in Canadian dairy Holstein cattle. BMC Genetics, 17(1), 1-11. https://doi.org/10.1186/s12863-016-0386-1
Olori, V., Pool, M., Calus, M., Cromie, A. & Veerkamp, R. (2003). Joint evaluation of survival and fertility in dairy cattle with a linear model. Interbull Bulletin (30), 20.
Shahabi, A., Tahmoorespour, M. & Kazemipour, A. (2019). Reconstruction, analysis and comparison of gene networks topology based on RNA-Seq data involved in reproductive and fertility complex traits. Agricultural Biotechnology Journal, 11(2), 57-78. DOI: 10.22103/jab.2019.13510.1112
Snelling, W., Cushman, R., Keele, J., Maltecca, C., Thomas, M., Fortes, M. & Reverter, A. (2013). Breeding and genetics symposium: Networks and pathways to guide genomic selection. Journal of Animal Science, 91(2), 537-552. https://doi.org/10.2527/jas.2012-5784
Yang, I. S. & Kim, S. (2015). Analysis of whole transcriptome sequencing data: workflow and software. Genomics and Informatics, 13(4), 119. DOI: 10.5808/GI.2015.13.4.119.