مطالعه مقایسه‌ای پوشش ترانسکریپتومی و چندشکلی‌های تک‌نوکلئوتیدی ژنوم میتوکندری در گاو ‏هلشتاین (‏Bos taurus‏) در مقابل کلیستانی (‏Bos indicus‏)‏

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناس ارشد، گروه علوم دامی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

2 دانشیار ژنتیک و اصلاح دام، گروه علوم دامی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

3 دانشیار ژنتیک و اصلاح دام، بخش پژوهش‌های بیوتکنولوژی، موسسه تحقیقات علوم دامی کشور، سازمان تحقیقات، آموزش و ‏ترویج کشاورزی، کرج، ایران

4 دانشیار ژنتیک و اصلاح دام، گروه علوم دامی و بیوانفورماتیک، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

چکیده

هدف از انجام پژوهش حاضر، بررسی دلایل اختلاف بیان ژن بسیار فاحش بین دو زیر گونه گاو هلشتاین و کلیستانی و اهمیت ژن­های میتوکندری این دو نژاد شامل COX1، COX2، COX3، ND1 وND2 می­باشند که در فرآیندهای مهمی از جمله متابولیسم انرژی، در مقابله با تنش­های زیستی و غیرزیستی و نیز مقاومت به بیماری نقش دارند. در این مطالعه از داده های RNA-Seq مربوط به ادغام 40 نمونه از مرکز گاو شیری دانشگاه ویسکانسین آمریکا (Bos taurus) و 45 گاو ماده کلیستانی (Bos indicus) در مزرعه گوجایتپیر شهر باهاوالپور واقع در ایالت پنجاب پاکستان استفاده شد. جهت بررسی سطح پوشش ترانسکریپتومی و اختلافات ژنتیکی که شامل نواحی چندشکلی، نواحی حذف و اضافه و نواحی اتصال بود از نرم افزار IGB استفاده شد. همچنین جهت تعیین مکان نواحی چندشکل و محاسبه درصد انواع جایگزینی­­های انتقالی و تقاطعی نوکلئوتیدها و هم‌ردیف­سازی توالی­ها نرم­افزارهای MEGA6 و DnaSPV.5 استفاده شدند. نتایج حاصل از این مطالعه، بیانگر این بود که ژن COX1 به طول 1542 جفت باز، بیشترین سطح پوشش ترانسکریپتومی (کاوریج) در ژنوم میتوکندری را دارا بود و کمترین سطح پوشش ترانسکریپتومی مربوط به ژن ND1 بود. در بین ژن­های میتوکندری، ژن COX1 بیشترین میزان حذف و اضافه را نشان داد که در نژاد هلشتاین بیشتر از کلیستانی بود. تعداد نواحی چندشکل در جایگاه COX1 بیشتر از سایر ژن­ها و برابر با 19 ناحیه بود. همچنین نتایج نشان داد که درصد جایگزینی تک نوکلئوتیدی انتقالی در بازها بیشتر از جایگزینی تک نوکلئوتیدی تقاطعی می­باشد که دلیل پایداری تغییرات در طی نسل­های متفاوت هستند. بنابراین، دلایل احتمالی تفاوت بیان ژن­های mtDNA می­تواند در نتیجه تفاوت در اتفاقات فرآیندهای حذف و اضافه، پوشش ترانسکریپتوم و نواحی چندشکلی باشند. 

کلیدواژه‌ها


عنوان مقاله [English]

A comparative study of transcriptome coverage and single nucleotide polymorphisms ‎of mtDNA in Holstein (Bos taurus) vs. Cholistani (Bos indicus)‎

نویسندگان [English]

  • Ahmad Tamroosi 1
  • Gholam Reza Dashab 2
  • Hossein Banabazi 3
  • Ali Maghsoudi 4
1 M.Sc. Graduate, Department of Animal Science, College of Agriculture, University of Zabol, Zabol, Iran
2 Associate Professor of Animal Breeding and Genetic, Department of Animal Science, College of Agriculture, University of Zabol, ‎Zabol, Iran
3 Associate Professor, Department of Biotechnology, Animal Science Research Institute of Iran (ASRI), Agricultural Research, ‎Education and Extension Organization (AREEO), Karaj, Iran
4 Associate Professor of Animal Breeding and Genetic, Department of Animal Science and Bioinformatic, College of Agriculture, ‎University of Zabol, Zabol, Iran
چکیده [English]

This research aimed to investigate the reasons for the difference of gene expression between two subspecies of Holstein and Cholistani cattle and the importance of mitochondrial genes of these two breeds, the genes under study were COX1, COX2, COX3, ND1and ND2, which are involved in essential processes such as energy metabolism, resistance to biological and non-biological stresses, as well as disease resistance. In this study, RNA-Seq data were used, including 40 samples from the University of Wisconsin Dairy Cattle Center (Bos taurus) and 45 Cholistani cows (Bos indicus) of Gujaratpir farm in Bahawalpur, Punjab, Pakistan. IGB software was used to investigate the level of transcriptome coverage and genetic differences, which included polymorphic, deletion and addition and binding regions. MEGA6 and DnaSPV.5 softwares were also used to determine the location of polymorphic areas as well as to calculate the percentage of different types of transitional and transversional replacements of nucleotides and to align sequences. The results showed that the COX1 gene, with a length of 1542 bp, had the highest level of transcriptome coverage in the mitochondrial genome and the lowest level of transcriptome coverage was related to the ND1 gene. Among mitochondrial genes, the COX1 gene showed the highest deletions and additions, which were higher in Holstein than Cholistani breeds. The number of polymorphic regions in the COX1 locus (19 areas) was higher than other genes. The results also showed that the percentage of transitional substitution is higher than transversional substitution which is the reason for the stability of changes during different generations. Therefore, possible reasons for differences in mtDNA gene expression may be due to differences in deletion and addition processes, transcriptome coverage, and polymorphic regions.

کلیدواژه‌ها [English]

  • Addition and deletion
  • Cholistani
  • Gene expression
  • Holstein
  • Transcriptome coverage‎
  1. Ajmone-Marsan, P., Lenstra, J. A., Fernando Garcia, J. & Con‑sortium, G. (2010). On the origin of cattle: how aurochs became domestic and colonized the world. Evolutionary Anthropology Issues News and Reviews, 19, 148-57.
  2. Anderson, S., Bankier, A. T., Barrell, B. G., De Bruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R. & Young, I. G. (1981). Sequence and organization of the human mitochondrial genome. Nature, 290, 457-465.
  3. Banabazi, M. H., Ghaderi-Zefrehei, M., Imumorin, I. & Peters, S. (2013). Whole Transcriptome Value Index (WTVI): A methodology for integrating functional sequences from RNA-Seq data into animal selection. 21st International Conference on Plant and Animal Genome, 12-16 pp, San Diego, United States.
  4. Bandiera, S., Matégot, R., Girard, M., Demongeot, J. & Henrion-Caude, A. (2013). MitomiRs delineating the intracellular localization of microRNAs at mitochondria. Free Radical Biology and Medicine, 64, 12-19.
  5. Bao, H., Zhao, C., Zhang, L., Li, J. & Wu, C. (2008). Single-nucleotide polymorphisms of mitochondrially coded subunit genes of cytochrome c oxidase in five chicken breeds: DNA Sequence, 19(5), 461-464.
  6. Bradley, D. G., MacHugh, D. E., Cunningham, P. & Loftus, R. T. (1996). Mitochondrial diversity and the origins of African and European cattle. Proceedings of the National Academy of Sciences, 93, 5131-5135.
  7. Chen, Y. F., Kao, C. H., Chen, Y. T., Wang, C. H., Wu, C. Y., Tsai, C. Y., Liu, F. C., Yang, C. W., Wei, Y. H., Hsu, M. T., Tsai, S. F. & Tsai, T. F. (2009). Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice. Genes & Development, 23(10), 1183-1194.
  8. Cooper, G. M. & Hausman, R. E. (2007). The Cell: A Molecular Approach. 4th edition Washington, D.C., Sunderland, Mass., ASM Press.
  9. Costa, V., Angelini, C., De Feis, I. & Ciccodicola, A. (2010). Uncovering the complexity of transcriptomes with RNA-Seq. Journal of Biomedicine and Biotechnology, 2010, 1-16.
  10. Fontanesi, F. (2001). Mitochondria: structure and role in respiration. eLS, 1-13.
  11. Freese, N. H., Norris, D. C. and Loraine, A. E. (2016). Integrated Genome Browser: Visual analytics platform for genomics. Bioinformatics, 32 (14), 2089-2095.
  12. Fries, R. & Ruvinsky, A. (1999). The Genetics of Cattle. New York: CABI Publising.
  13. Gray, M. W. (2012). Mitochondrial evolution. Cold Spring Harbor Perspectives in Biology, 4(9), a011403.
  14. Groeneveld, L. F., Lenstra, J. A., Eding, H., Toro, M. A., Scherf, B., Pilling, D., Negrini, , Finlay, E. K., Jianlin, H., Groeneveld, E., Weigend, S. & Consortium, G. (2010). Genetic diversity in farm animals–a review. Animal Genetics, 41, 6-31.‏
  15. Hanotte, O. & Jianlin, H. (2005). Genetic Characterization of Livestock Populations and Its Use in Conservation Decision-Making. Villa Gualino, Turin, Italy. 5-7 March, 131-136.
  16. Helmer, D., Gourichon, L., Monchot, H., Peters, J. & San˜a Segui, M. (2005). Identifying early domestic cattle from pre-pottery neolithic sites on the midddle euphratesusing sexual dimorphism. In The First Steps of Animal Ddomestication: New Archaeozoological Approaches (eds J.-D. Vigne, D. Helmer & J. Peters), pp. 86-95. Oxford, UK: Oxbow Books.
  17. Herrero-Medrano, J. M., Megens, H. J., Groenen, M. A., Ramis, G., Bosse, M., Pérez-Enciso, M. & Crooijmans, R. P. (2013). Conservation genomic analysis of domestic and wild pig populations from the Iberian Peninsula. BMC Genetics, 14(1), 106.‏
  18. Hoffmann, I. (2010). Climate change and the characterization, breeding and conservation of animal genetic resources. Animal Genetics, 41, 32-46.‏
  19. Huang, W., Nadeem, A., Zhang, B., Babar, M., Soller, M. & Khatib, H. (2012). Characterization and comparison of the leukocyte transcriptomes of three cattle breeds. PLoS One, 7(1), e30244.
  20. Kujoth, G. C., Bradshaw, P. C., Haroon, S. & Prolla, T. A. (2007). The role of mitochondrial DNA mutations in mammalian aging. PLoS Genetics, 3(2), e24.
  21. Levin, J., Adiconis, X., Yassour, M., Thompson, D., Guttman, M., Berger, M. & Regev, A. (2010). Development and evaluation of RNA-Seq methods. Genome Biology, 11(Suppl 1), 1-1.
  22. Librado, P. & Rozas, J. (2009). DnaSP v5: software for comprehensive analysis of DNA polymorphism data. Journal of Bioinformatics, 25, 1451-1452.
  23. Loftus, R. T., MacHugh, D. E., Bradley, D. G., Sharp, P. M. & Cunningham, P. (1994). Evidence for two independent domestications of cattle. Proceedings of the National Academy of Sciences, 91, 2757-2761.
  24. Mannen, H., Kohno, M., Nagata, , Tsuji, S., Bradley, D. G., Yeo, J. S., Nyamsamba, D., Zagdsuren, Y., Yokohama, M., Nomura, K. & Amano, T. (2004). Independent mitochondrial origin and historical genetic differentiation in north eastern Asian cattle. Molecular Phylogenetic Evolution, 32, 539-544.
  25. Marguerat, S. & Bähler, A. (2010). RNA-Seq: from technology to biology. Cellular and Molecular Life Sciences, 67(4), 569-579.
  26. Okazaki, Y., Furuno, M., Kasukawa, T., Adachi, J., Bono, H., Kondo, S. & Yamanaka, I. (2002). FANTOM consortium RIKEN genome exploration research group phase I & II team analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature, 420(6915), 563-573.
  27. Pickrell, A. M. & Youle, R. J. (2015). The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson's disease. Neuron, 85, 257-273.
  28. Ruiz-Pesini, E., Lott, M. T., Procaccio, V., Poole, J. C., Brandon, M. C., Mishmar, D., Yi, C., Kreuziger, J., Baldi, P. & Wallace, D. C. (2007). An enhanced MITOMAP with a global mtDNA mutational phylogeny. Nucleic Acids Research, 35, 823-828.
  29. Salimpour, M. (2016). Differential Gene Expression Analysis Between the Holstein and Cholistani (a Pakistani Bbreed) Population Using RNA Sequencing (RNA-Seq). M. Sc. Thesis, University of Tehran, IRAN. (in Persian)
  30. Salimpour, M., Miraei-Ashtiani, S. R. & Banabazi, M. H. (2019). Differential gene expression of two bovine Bos Taurus (Holstein) and Bos Indicus (Cholistani) sub-species using RNA-Seq data. Iranian Journal of Animal Science, 50(1), 47-55. (In Persian)
  31. Schauer, M., Kottek, T., Schönherr, M., Bhattacharya, A., Ibrahim, S. M., Hirose, M., Rüdiger Köhling, , Fuellen, G., Schmitz, U. & Kunz, M. (2015). A mutation in the NADH-dehydrogenase subunit 2 suppresses fibroblast aging. Oncotarget, 6(11), 8552.
  32. Shi, Y., Hu, Y., Wang, J., Elzo, M. A., Yang, X. & Lai, S. (2018). Genetic diversities of MT-ND1 and MT-ND2 genes are associated with high-altitude adaptation in yak. Mitochondrial DNA Part A, 29(3), 485-494.
  33. Soto, I. C., Fontanesi, F., Liu, J. & Barrientos, A. (2012). Biogenesis and assembly of eukaryotic cytochrome c oxidase catalytic core. Biochimica Et Biophysica Acta (BBA)-Bioenergetics, 1817(6), 883-897.
  34. Tamura, K. & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10, 512-526.
  35. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729.
  36. Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, , Bodeau, J., Tuch, B. B., Siddiqui, A., Lao, K. & Surani, M. A. (2009). mRNA-Seq whole-transcriptome analysis of a single cell. Nature Methods, 6(5), 377.
  37. Troy, C. S., MacHugh, D. E., Bailey, J. F., Magee, D. A., Loftus, R. T., Cunningham, P., Chamberlain, A. T., Sykes, B. C. & Bradley, D. G. (2001). Genetic evidence for Near-Eastern origins of European cattle. Nature, 410, 1088–1091.
  38. Tuppen, H. A., Blakely, E. L, Turnbull, D. M. & Taylor, R.W. (2010). Mitochondrial DNA mutations and human disease. Biochimica et Biophysica Acta, 1797, 113-128.
  39. Wang, K. C. & Chang, H. Y. (2011). Molecular mechanisms of long noncoding RNAs. Molecular Cell, 43(6), 904-914.