آثار استفاده از پودر جلبک اسپیرولینا پلاتنسیس ‏‎(Spirulina platensis)‎‏ در جیره بر عملکرد، کیفیت ‏تخم‌مرغ، فولیکول‌های تخمدانی و وضعیت سیستم ایمنی مرغ‌های تخم‌گذار سویه ‏LSL

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد، گروه علوم دامی، واحد شهر قدس، دانشگاه آزاد اسلامی، تهران، ایران

2 استادیار، گروه علوم دامی، واحد شهر قدس، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

به‌منظور بررسی آثار استفاده از سطوح مختلف (صفر، 3/0، 6/0 و 9/0 درصد جیره) پودر جلبک سبز-آبی (اسپیرولینا پلاتنسیس) بر عملکرد، کیفیت تخم‌مرغ، فراسنجه‌های تخمدانی و وضعیت سیستم ایمنی، از تعداد 192 قطعه مرغ تخم‌گذار سویه LSL در سن 26 تا 37 هفتگی، در قالب طرح کاملاً تصادفی با 4 تیمار و 4 تکرار (12 قطعه مرغ در هر تکرار) استفاده شد. افزودن جلبک به جیره، در کل دوره آزمایش اثری بر مقدار مصرف خوراک روزانه، ضریب تبدیل خوراک، درصد تخم‌مرغ­های شکسته و متوسط وزن تخم‌مرغ­ها نداشت (05/0P>). اما استفاده از سطوح 6/0 و 9/0 درصد پودر جلبک، درصد تولید تخم­مرغ را نسبت به سطح 3/0 درصد و استفاده از سطح 6/0 درصد پودر جلبک، توده تخم­مرغ تولیدی را نسبت به گروه شاهد افزایش داد (05/0P<). تیمارهای آزمایشی بر ضخامت، مقاومت و درصد پوسته، ارتفاع سفیده و واحد هاو اثر معنی­داری نداشتند، اما با افزایش سطح استفاده از جلبک، وزن پوسته و رنگ زرده افزایش یافت (05/0P<). تیمارهای آزمایشی اثری بر تعداد گلبول‌های سفید و قرمز، پلاکت‌ها، نسبت هتروفیل به لنفوسیت، غلظت هموگلوبین و نیز بر پاسخ ایمنی همورال علیه گلبول قرمز گوسفند و ایمنی سلولی در پاسخ به تزریق زیرپوستی فیتوهماگلوتینین نداشتند (05/0P>). تعیین عیار پادتن علیه ویروس نیوکاسل (در هفته‌های 35 و 37) نشان داد که سطوح 6/0 و 9/0 درصد جلبک در هفته 37، به‌طور معنی­داری عیار پادتن را نسبت به گروه شاهد افزایش دادند (05/0P<). تعداد فولیکول­های مختلف تخمدانی، وزن نسبی بورس فابریسیوس و طحال و لاشه تحت تأثیر تیمارهای آزمایشی قرار نگرفت. نتایج نشان داد که افزودن 6/0 درصد جلبک اسپیرولینا به جیره، سبب افزایش توده تخم­مرغ تولیدی، بهبود رنگ زرده تخم‌مرغ و بهبود پاسخ آنتی­بادی می­شود.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of dietary Spirulina platensis algae powder on performance, egg quality, ‎ovarian follicles and immune system in Lohmann LSL laying hens

نویسندگان [English]

  • Esmaeil Ahmadi Nia 1
  • Morteza Mehri 2
  • Fatemeh Shirmohammad 2
1 M.Sc. Graduate, Department of Animal Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
2 Assistant Professor, Department of Animal Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

The objective of this study was to investigate the effects of different levels (0%, 0.3%, 0.6% and 0.9%) of blue-green algae (Spirulina platensis) on performance, egg quality, ovarian parameters and immune system of LSL laying hens at 26-37 wk. of age. One hundred and ninety-two hens were used in a completely randomized design with four treatments and four replications. The effect of algae on daily feed intake, feed conversion ratio, broken eggs percent and egg weight was not significant, but the egg mass improved using 0.6% algae compared with control group (P<0.05). Also, egg production of hens fed the diet with 0.6% and 0.9% Spirulina/kg were higher than treatment 2 (P<0.05). Eggshell breaking strength, eggshell relative weight, eggshell thickness, albumen height and haugh unit were not affected by treatments. However, increasing the dietary levels of Spirulina caused the improvements in eggshell weight and egg yolk color. None of the treatments had significant effects on white and red blood cells, platelets, heterophiles/lymphocytes ratio and concentration of hemoglobin. Dietary treatments did not have significant effects on humoral immunity against SRBC and cell mediated immunity response against PHA injection. But the treatments had a significant effect on the antibody titer in vaccinated birds against Newcastle. In addition, there were no influences of the experimental diets on ovarian different follicles, relative weight of bursa, spleen and carcass. In conclusion, inclusion of 0.6% Spirulina platensis algae in diet increased egg mass, egg yolk color and antibody titer against Newcastle vaccine.

کلیدواژه‌ها [English]

  • Immunity system
  • laying hen
  • algae
  • Spirulina platensis
  1. Abadjieva, D., Radka, N., Yordan, M., Gergana, J., Mihail, C., Dineva, J., Shimkus, A., Shimkiene, A., Teerds, K. & Kistanova, E. (2017). Arthrospira (Spirulina) platensis supplementation affects folliculogenesis, progesterone and ghrelin levels in fattening pre-pubertal gilts. Journal of Applied Phycology, 30, 445-452. https://doi:10.1007/s10811-017-1263-7
  2. AbdEl-Ghany, W. A. (2020). Microalgae in poultry field: A comprehensive perspectives. Advances in Animal and Veterinary Sciences, 8(9), 888-897. https://doi: 10.17582/journal.aavs/2020/8.9.888.897
  3. An, B. K., Jeon, J. Y., Kang, C. W., Kim, J. M. & Hwang, J. K. (2014). The tissue distribution of lutein in laying hens fed lutein fortified Chlorella and production of chicken eggs enriched with lutein. Korean Journal for Food Science of Animal Resources, 34, 172-177. https://doi:10.5851/kosfa.2014.34.2.172 PMID: 26760935
  4. Ao, T., Macalintal, L. M., Paul, M. A., Pescatore, A. J., Cantor, A. H., Ford, M. J., Timmons, B. & Dawson, K. A. (2015). Effects of supplementing microalgae in laying hen diets on productive performance, fatty-acid profile, and oxidative stability of eggs. Journal of Applied Poultry Research, 24, 394–400. https://doi:10.3382/japr/pfv042.
  5. Becker, E. W. (2013). Microalgae for human and animal nutrition. In: Richmond, A. & Q. Hu (Ed), Handbook of Microalgal Culture: Applied Phycology and Biotechnology. (pp. 461-503) Wiley Blackwell, West Sussex, United Kingdom.
  6. Belay, A., Kato, T. & Ota, Y. (1996). Spirulina (Arthrospira), potential application as an animal feed supplement. Journal of Applied Phycology, 8, 303–311. https://doi.org/10.1007/BF02178573
  7. Bonos, E., Kasapidu, E., Kargopolos, A., Karampampas, A., Christaki, E., Florou-Paneri, P. & Nikolakakis, I. (2016). Spirulina as a functional ingredient in broiler chicken diets. South African Journal of Animal Science, 46(1), 94-102. https://doi:10.4314/sajas.v46i1.12
  8. DanishMunda, M., Khanb, U. H., Tahir, U., Mustafa, B. & Fayyaz, A. (2017). Antimicrobial drug residues in poultry products and implications on public health: A review. International Journal of Food Properties, 20(7), 1433–1446.  https://doi:10.1080/10942912.2016.1212874
  9. Donoghue, D. J. (2003) Antibiotic Residues in Poultry Tissues and Eggs: Human Health Concerns? Poultry Science, 82, 618–621. https://doi:10.1093/ps/82.4.618
  10. El-Hady, A. M. A. & El-Ghalid, O. A. H. (2018). Spirulina platensis Algae (SPA), a novel poultry feed additive. Effect of SPA supplementation in broiler chicken diets on productive performance, lipid profile and calcium-phosphorus metabolism. World’s Poultry Science Journal, 7498, 1-7.
  11. El-Kholy, H. & Kemppainen, B. W. (2004). Levamisole Residues in Chicken Tissues and Eggs. Poultry Science, 84, 9-13. https://doi:10.1093/ps/84.1.9
  12. Emami, S. & Olfati, A. (2017). Effects of dietary supplementing of Spirulina platensis and chlorella vulgaris microalgae on hematologic parameters in streptozotocin-induced diabetic rats. Iranian Journal of Pediatric Hematology and Oncology, 7(3), 163-170.
  13. Food and Agriculture Organization. (2008).A Review on culture, production and use of Spirulina as food for humans and feeds for domestic animals and fish, from http://www.fao.org/3/i0424e/i0424e00.htm.
  14. Fathi, M.A., Namra, M.M.M., Ragab, M.S. & Aly, M.M.M. (2018). Effect of dietary supplementation of algae meal (Spirulina platensis) as growth promoter on performance of broiler chickens. Egyptian Poultry Science, 38(2), 375-389.
  15. Grasman, K. (2010). In vivo functional tests for assessing immunotoxicity in birds. Methods in Molecular Biology, 598: 387-98. https://doi.org/10.1007/978-1-60761-401-2_25.
  16. Hajati, H. & Zaghari, M. (2019). Effects of Spirulina platensis on Growth Performance, Carcass Characteristics, Egg Traits and Immunity Response of Japanese Quails. Iranian Journal of Applied Animal Science, 9(2), 347-357.
  17. Hajati, H., Zaghari, M. & Oliveira, H. C. (2020). Arthrospira (Spirulina) Platensis can be considered as a probiotic alternative to reduce heat stress in laying Japanese quails. Brazilian Journal of Poultry Science, 22(1), 1-8. https://doi.org/10.1590/1806-9061-2018-0977.
  18. Hynstova, V., Sterbova, D., Klejdus, B., Hedbavny, J., Huska, D. & Adam, V. (2018). Separation, identification and quantification of carotenoids and chlorophylls in dietary supplements containing Chlorella vulgaris and Spirulina platensis using high performance thin layer chromatography. Journal of Pharmaceutical and Biomedical Analysis, 148, 108-118. https://doi:10.1016/j.jpba.2017.09.018 PMID: 28987995
  19. Katayama, S., Kayahara, Y. & Watanabe, T. (2016). Enhancement of immunological responses by dietary Arthrospira platensis and possibility of field applications as alternative to antibiotics in broiler chicken. American Journal of Animal Veterinary Science, 11, 18-24. https://doi.org/10.3844/ajavsp.2016.18.24.
  20. Krishnaveni, R., Palanivelu, K. & Velavan, S. (2013). Effects of probiotics and Spirulina supplementation on haemato-immunological function of catla catla. International Journal of Fisheries and Aquaculture, 3(4), 176-181.
  21. Long, S. F., Kang, S., Wang, Q. Q., Xu, Y. T., Pan, L., Hu, J. X., Li, M. & Piao, X. S. (2018). Dietary supplementation with DHA-rich microalgae improves performance, serum composition, carcass trait, antioxidant status, and fatty acid profile of broilers. Poultry Science, 97, 1881-1890. https://doi:10.3382/ps/pey027 PMID: 29509916
  22. Madeira, M. S., Cardoso, C., Lopes, P. A., Coelho, D., Afonso, C., Bandarra, N. M. & Prates, J. A. M. (2017). Microalgae as feed ingredients for livestock production and meat quality: a review. Livestock Science, 205, 111-121. https://doi.org/10.1016/j.livsci.2017.09.020
  23. Manoher, M. (2005). Probiotic and Spirulina as source of Immunostimulants and Growth in common Carp. Ph.D. Thesis. Manonmaniam Sundaranar University, India.
  24. Mariey, Y. A., Samak, H. R. & Ibrahem, M. A. (2012). Effect of using Spirulina platensis algae as a feed additive for poultry diets. Productive and reproductive performances of local laying hens. Egyptian Poultry Science, 32, 201-215.
  25. Michalak, I., Andrys, M., Korczy´nski, M., Opalinski, S., Łeska, B., Konkol, D., Wilk, R., Rój, E. & Chojnacka, K. (2020). Biofortification of hens eggs with polyunsaturated fatty acids by new dietary formulation: supercritical microalgal extract. Animals, 10, 499-512. https://doi:10.3390/ani10030499 PMID: 32192036
  26. Mirzaie, S., Zirak-Khattab, F., Hosseini, S. A. & Donyaei-Darian, H. (2018). Effects of dietary Spirulina on antioxidant status, lipid profile, immune response and performance characteristics of broiler chickens reared under high ambient temperature. Asian-Australasian Journal of Animal Science, 31(4), 556-563. https://doi:10.5713/ajas.17.0483 PMID: 28920419
  27. 27.   Mohamed, R. A., Eltholth M. M. & El-Saidy, N. R. (2014). Rearing broiler chickens under monochromatic blue light improve performance and reduce fear and stress during pre-slaughter handling and transportation. Biotechnology in Animal Husbandry, 30(3), 457-471. https://doi.org/10.2298/BAH1403457M
  28. Molnar, A., Bassett, A., Thuenemann, E., Schwach, F., Karkare, S., Ossowski, S., Weigel, D. & Baulcombe, D. (2009). Highly specific gene silencing by artificial micro RNAs in the unicellular alga Chlamydomonas reinhardtii. The Plant Journal, 58(1), 165-74. https://doi:10.1111/j.1365-313X.2008.03767.x.
  29. Oh, S. T., Zheng, L., Kwon, H. J., Choo, Y. K., Lee, K. W., Kang, C. W. & An, B. K. (2015). Effects of dietary fermented Chlorella vulgaris (CBT®) on growth performance, relative organ weights, cecal microflora, tibia bone characteristics, and meat qualities in Pekin ducks. Asian-australasian Journal of Animal Science, 28, 95-101. https://doi:10.5713/ajas.14.0473.
  30. Park, J. H., Lee, S. I. & Kim, I. H. (2018). Effect of dietary Spirulina (Arthrospira) platensis on the growth performance, antioxidant enzyme activity, nutrient digestibility, cecal microflora, excreta noxious gas emission, and breast meat quality of broiler chickens. Poultry Science, 97(7), 2451-2459. https://doi.org/10.3382/ps/pey093
  31. Pestana, J. M., Puerta, B., Santos, H., Madeira, M. S., Alfaia, C. M., Lopes, P. A., et al. (2020). Impact of dietary incorporation of Spirulina (Arthrospira platensis) and exogenous enzymes on broiler performance, carcass traits, and meat quality. Poultry Science, 99, 519–2532. https://doi:10.1016/j.psj.2019.11.069
  32. Qureshi, M. A., Garlich, J. D. & Kidd, M. T. (1996). Dietary Spirulina platensis enhances humoral and cell-mediated immune functions in chickens. Immunopharmacology and Immunotoxicology, 18, 465–476. https://doi:10.3109/08923979609052748 PMID: 8872497
  33. Raju, M. V. L. N., Rao, S. V., Radnika, K. & Chawak, M. M. (2005). Dietary supplementation of Spirulina and its effects on broiler chicken exposed to aflatoxicosis. Indian Journal Poultry Science, 40(1), 36-40.
  34. Raposo, M. F. & Morais, A. M. M. (2015). Microalgae for the prevention of cardiovascular disease and stroke. Life Science, 125, 32-41. https://doi:10.1016/j.lfs.2014.09.018.
  35. Romay, C. & Gonzalez, R. (2000). Phycocyanin is an antioxidant protector of human erythrocytes against lysis by peroxyl radicals. Journal of Pharmacy and Pharmacology, 52(4), 367-368. https://doi.org/10.1211/0022357001774093 PMID: 10813544
  36. Ross, E., Puapong, D. P., Cepeda, F. P. & Patterson, P. H. (1994). Comparison of freeze-dried and extruded Spirulina platensis as yolk pigmenting agents. Poultry Science, 73, 1282-1289. https://doi.org/10.3382/ps.0731282 PMID: 7971672
  37. Selim, S., Hussein, E. & Abou-Elkhair, R. (2018). Effect of Spirulina platensis as a feed additive on laying performance, egg quality and hepatoprotective activity of laying hens. European Poultry Science, 82, 1-13. https://doi:10.1399/eps.2018.227.
  38. Shanmugapriya, B., Babu, S. S., Hariharan, T., Sivaneswaran, S. & Anusha, M. B. (2015). Dietary administration of Spirulina platensis as probiotics on growth performance and histopathology in broiler chicks. International Journal of Current Scientific Research, 6, 2650-2653.
  39. Swiatkiewicz, S., Arczewska-Wlosek, A. & Jozefiak, D. (2015). Application of microalgae biomass in poultry nutrition. World’s Poultry Science Journal, 71, 663–672. https://doi:10.1017/S0043933915002457
  40. Tornabene, T. G., Bourne T. F., Raziuddin S. & Ben-Amotz, A. (1985). Lipid and lipopolysaccharide constituents of cyanobacterium Spirulina platensis. Marine Ecology Progress Series, 22, 121-125. https://doi:10.3354/meps022121.
  41. Yukino, T., Hayashi, M., Inoue, Y., Imamura, J., Nagano, N. & Murata, H. (2005). Preparation of docosahexaenoic acid fortified Spirulina platensis and its lipid and fatty acid compositions. Nippon Suisan Gakkishi, 71(1), 74-79. https://doi:10.2331/suisan.71.74
  42. Zahroojian, N., Moravej, H. & Shivazad, M. (2011). Comparison of marine algae (Spirulina platensis) and synthetic pigment in enhancing egg yolk colour of laying hens. British Poultry Science, 52(5), 584-588. https://doi:10.1080/00071668.2011.610779 PMID: 22029786
  43. Zahroojian, N., Moravej, H. & Shivazad, M. (2013). Effect of dietary marine algae on egg quality and production performance of laying hens. Journal of Agricultural Science and Technology, 15, 1353-1360.