8954856055505db

شناسایی ژن‌ها، مسیرهای زیستی و سیگنالینگ مؤثر در تنش گرمایی با استفاده از داده‌های ریزآرایه در ‏طیور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد ژنتیک و اصلاح نژاد دام، گروه علوم دامی، پردیس ‏کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران.‏

2 دانشیار، ژنتیک و اصلاح نژاد دام، گروه علوم دامی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، ‏کرج، ایران

3 دانش‌آموخته دکتری ژنتیک و اصلاح نژاد دام، گروه علوم دامی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ‏ایران

4 استاد ژنتیک و اصلاح نژاد دام، گروه علوم دامی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

چکیده

  تنش گرمایی در طیور تأثیر به‌سزایی در کاهش عملکرد، سیستم ایمنی و افزایش تلفات دارد. با توجه به تعاملات میان مسیرهای زیستی دخیل در تنش گرمایی و اهمیت تنظیم‌کنندگی آن‌ها، استفاده از یک رویکرد جامع برای مطالعه تنش گرمایی ضروری می‌باشد. در این مطالعه اثرات تنش گرمایی بر بیان ژن در دو گروه از جوجه‌های گوشتی تحت تأثیر تنش گرمایی و بدون تنش گرمایی (شاهد)، بررسی شد. در تجزیه، داده‌های ریزآرایه تعداد 1000 ژن استخراج و پس از حذف ژن‌های تکراری و خارج از سطح معنی‌داری در بیان (01/0P<)، تعداد 709 ژن شناسایی شد. با بهره‌گیری از سایت String و آنالیز ژن‌ها در نرم‌افزار Cytoscape، تعداد 115 ژن در چهار ماژول عملکردی شناسایی شد که در مسیرهای زیستی اسپلایسوزوم، یوبیکویتین واسطه‌گر پروتئولیز، بیوژنز ریبوزوم، پردازش پروتئین در شبکه آندوپلاسمی، اتوفاژی-حیوانی و مسیرهای سیگنالینگ سیستم ایمنی ذاتی، MAPK Pathway و پیری سلولی دخیل بودند. نتایج این پژوهش نشان می‌دهد که تنش گرمایی در طیور نقش مهمی در عملکرد رشد، سیستم ایمنی و سایر مکانیسم‌های بیولوژیکی دارد. شناسایی ژن‌های مؤثر در تنش گرمایی همچون PTEN و HSPها در پرندگان و بررسی داده‌های ریزآرایه، می‌تواند افق جدیدی را در درک بهتر فرآیندهای زیستی مرتبط با تنش گرمایی پیش روی ما قرار دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Identification of genes, biological pathways and signaling affecting heat stress with ‎microarray data sets in poultry

نویسندگان [English]

  • Milad Rezaei Sinaki 1
  • Mostafa Sadeghi 2
  • Abolfazl Bahrami 3
  • Mohammad Moradi Shahrbabak 4
1 M.Sc. Student of Animal Breeding and Genetics, Department of Animal Science, ‎College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
2 Associate Professor of Animal Breeding and Genetics, Department of Animal Science, College of ‎Agriculture and Natural Resources, University of Tehran, Karaj, Iran
3 Former Ph.D. Srtudent of Animal Breeding and Genetics, Department of Animal Science, College of Agriculture and Natural ‎Resources, University of Tehran, Karaj, Iran
4 Professor of Animal Breeding and Genetics, Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, ‎Karaj, Iran
چکیده [English]

Heat stress in poultry decreases performance, weakens immune system and increases mortality, significantly. Given the interactions between biological pathways involved in heat stress, it is necessary to use a comprehensive approach to study heat stress. In this study, the effects of heat stress on gene expression in two groups of broilers under heat stress and without heat stress (control) were investigated. In the analysis, microarray data were extracted from 1000 genes and after removing duplicate genes and out of the level of significance in expression (P <0.01), 709 genes were identified. Using the String site and gene analysis in Cytoscape software, 115 genes were identified in four functional modules. The identified modules were involved in biological pathways of Spliceosome, Ubiquitin-mediated proteolysis, Ribosome biogenesis, Protein Processing in Endoplasmic Reticulum, Autophagy-Animal and Important Signaling pathways including Innate Immune System, MAPK pathway and Cellular Senescence. The results of this study showed that heat stress in poultry plays an important role in growth function, immune system and other biological mechanisms. Identifying the genes involved in heat stress such as PTEN and HSPs in birds, and reviewing microarray data could open new horizons for a better understanding heat stress-related biological process.

کلیدواژه‌ها [English]

  • Biological pathways
  • gene expression
  • heat stress
  • Microarray
  • signaling pathways
  1. Aalaei, M., Shahir, M. H., Mamouei, M. & Sallary, S. (2014). Effects of early age feed restriction and thermal conditioning on growth and carcass characteristics in broiler chickens subjected to heat stress. Iranian Veterinary Journal, 10(1), 5-12.
  2. Ain Baziz, H., Geraert, P.A., Padilha J.C.F. & Guillaumin, S. (1996). Chronic heat exposure enhances fat deposition and modifies muscle and fat partitionin broiler carcasses. Poultry Science Journal, 75, 505-513.
  3. Al-Saffar, A. (2009). The Interaction of dietary lysine and temperature on the reproductive performance of broiler breeders. 2nd Mediterranean Summit of Word Poultry Science Association, Antalya, Turkey, 4-7 October 2009, 143-147.
  4. Arabiyan, E., Hashemi, R., Yamchi, A., Davoodi, H. & Rostami, Sh. (2019). Evaluation of NF-kB gene expression in liver tissue of broiler chickens fed with silver nanoparticles as an indicator of inflammation induction in heat stress conditions. Research on Animal Production Journal, 10(24), 103-111.
  5. Babaabasi, B. (2017). Cellular and molecular bioinformatics. 2th edition, Dr. Khalili publications, Tehran, Iran, 333p.
  6. Bader, G.D. & Hogue, C.W. (2003). An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 4(1), 2.
  7. Barbasi, A. L., Gulbahce, N. & Loscalzo, J. (2011). Network medicine: a network-based approach to human disease. Nature Reviews Genetics, 12(1), 56-68.
  8. Cole, J. B., Lewis, R. M., Maltecca, C., Newman, S., Olson, K. M. & Tait, R. G. (2013). Systems biology in animal breeding: identifying relationships among markers, genes, and phenotypes, Breeding and Genetics Symposium, 91, 521-522.
  9. Estabrooks, S. & Brodsky, J. L. (2020). Regulation of CFTR biogenesis by the proteostatic network and pharmacological modulators. Molecular Sciences Journal, 21(2). doi: 10.3390/ijms21020452.
  10. Feizi, A., Dadian, F. & Asadzadehmajdi, S. (2012). The effect of heat stress on some blood parameters, biochemical values and humoral immunity in broiler chickens. Veterinary Clinical Pathology Journal, 6(3), 1621-1627.
  11. Gautier, L., Cope, L., Bolstad, B. M. & Irizarry, R. A. (2004). Affy - Analysis of Affymetrix GeneChip data at the probe level. Bioinformatics, 20, 307-315. https://doi.org/10.1093/bioinformatics/btg405.
  12. Gomes-Alves, P., Couto, F., Pesquita, C., Coelho, A. & Penque, D. (2010). Rescue of F508del-CFTR by RXR motif inactivation triggers proteome modulation associated with the unfolded protein response. Biochimica et Biophysica Acta, 1804, 856-65.
  13. Hu, X. & Ivashkiv, L.B. (2009). Cross-regulation of signaling pathways by interferon-γ: implications for immune responses and autoimmune diseases. Immunity Journal, 31(4), 539-550.
  14. Huber, W., Carey, V. J., Gentleman, R., Anders, S., Carlson, M., Carvalho, B. S., Bravo, H.C., Davis, S., Gatto, L., Girke, T. & Gottardo, R. (2015). Orchestrating High-Throughput Genomic Analysis with Bioconductor. Nature Methods Journal, 12(2), 115-121.
  15. Kadarmideen, H. N., Watson-Haigh, N. S. & Andronicos, N. M. (2011). Systems biology of ovine intestinal parasite resistance: disease gene modules and biomarkers. Molecular Biosystems, 7(1), 235-246.
  16. Kanehisa, M. & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research Journal, 28(1), 27-30.
  17. Lodish, H., Berk, A., Zipursky, L., Matsudaira, P., Baltimore, D. & Darnell, J. (2000). Molecular Cell Biology. New York: W.H. Freeman, 4th Edition, 1184p.
  18. Lotia, S., Montojo, J., Dong, Y., Bader, G. D. & Pico, A. R. (2013). Cytoscape app store. Bioinformatics, 29(10), 1350-1351.
  19. Marcos-Carcavilla A., Mutikainen, M., Gonzalez, C., Calvo, J. H., Kantanen, J., Sanz, A., Marzanov, N.S., Perez-Guzman, M.D. & Serrano, M. (2010). A SNP in the HSP90AA1 gene 5' flanking region is associated with the adaptation to differential thermal conditions in the ovine species. Cell Stress Chaperones, 15, 67-81.
  20. Mashaly, M. M., Hendricks, G. L., Kalama, M. A., Gehad, A. E., Abbas, A. O. & Patterson, P. H. (2004). Effect of heat stress on production parameters and immune response of laying hens. Poultry Science Journal, 83(6), 889-894.
  21. Mokaram, P., Dastghaib, S., Siri, M. & Rezayi, S. (2018). Evaluation of endoplasmic reticulum stress mechanism and unfold protein response signaling in cancer. Sadra Medical Sciences Journal, 6(4), 317-330.
  22. Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H. & Vilo, J. (2019). g: Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Research Journal, 47, 191-198.
  23. Rezvannejad, E., Mortazavi, M. & Riahi Medvar, A. (2016). Software modeling of heat-shock protein 70 (HSP70) of poultry. Novin Genetics, 11(2), 173-183. (in Farsi)
  24. Ritchie, M. E., Phipson, B., Wu, D., Hu, D., Hu, Y., Law, C. W., Shi, W. & Smyth, G. K. (2015). Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research Journal, 43(7), e47-e47.
  25. Sadrzadeh, A. (2012). Principles of Diseases Prevention in Poultry Broilers. (1st ed.). M. Sc. Thesis, Islamic Azad University Garmsar Branch, Garmsar, 1126p. (in Farsi)
  26. Sangster, T.A., Lindquist, S. & Queitsch, C. (2004). Under cover: causes, effects and implications of HSP90- mediated genetic capacitance. Bioessays, 26, 348-362.
  27. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B. & Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research Journal, 13(11), 2498-2504.
  28. Shi, X., Wang, J., Lei, Y., Cong, C., Tan, D. & Zhou, X. (2019). Research progress on the PI3K/AKT signaling pathway in gynecological cancer. Molecular Medicine Reports Journal, 19(6), 4529-4535.
  29. Slawinska, A., Hsieh, J.C., Schmidt, C.J. & Lamont, S.J. (2016). Heat stress and lipopolysaccharide stimulation of chicken macrophage-like cell line activates expression of distinct sets of genes. Plos One Journal, 11(10), 1-17.
  30. Smaili, M., Deldar, H. & Ansari Pirsaraei, Z. (2016). Effect of Mentha piperita powder and Citrus aurantium extract on heat shock protein (HSP70) gene expression and some blood parameters of broilers chickens in heat stress condition. Animal Sciense Research Journal, 26(3), 115-124.
  31. Song, XY., Luo, QB. & Zhang, XQ. (2010). Gene Expression Profiling of Three Tissues in Chicken with Heat Stress by Affymetrix Microarray. NCBI, GEO: GSE23592.
  32. Sun, Y., Liu, W. Z., Liu, T., Feng, X., Yang, N. & Zhou, H. F. (2015). Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. Receptors and Signal Transduction Journal, 35(6), 600-604.
  33. Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N.T., Morris, J.H., Bork, P. & Jensen, L. J., (2018). STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research Journal, 47(D1), D607-D613.
  34. Warde-Farley, D., Donaldson, S. L., Comes, O., Zuberi, K., Badrawi, R., Chao, P., Franz, M., Grouios, C., Kazi, F., Lopes, C.T. & Maitland, A. (2010). The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Research Journal, 38(suppl_2), W214-W220.
  35. Yari, R. (2011). Cell ageing and biotechnology. New Cellular and Molecular Biotechnology Journal, 1(4), 7-26.
  36. Zhao, Y., Tyshkovskiy, A., Muñoz-Espín, D., Tian, X., Serrano, M., De Magalhaes, J. P., Nevoi, E., Gladyshevc, V. N., Andrei Seluanova, A. & Gorbunova, V. (2018). Naked male rats can undergo developmental, oncogene-induced and DNA damage-induced cellular senescence. In: Proceedings of the National Academy of Sciences of the United States of America, 115(8), 1801-1806.