برآورد پارامترهای ژنتیکی صفات وزن بدن در دوره پایانی رشد و ایمنی همورال در بلدرچین ژاپنی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد، گروه علوم دامی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

2 استادیار، گروه علوم دامی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

3 دانشیار، گروه علوم دامی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

4 استادیار پژوهشی، پژوهشکده دام‌های خاص، دانشگاه زابل، زابل، ایران

چکیده

هدف مطالعه حاضر برآورد پارامترهای ژنتیکی صفات رشد در سنین پایانی (25 تا 45 روزگی) و پاسخ­های سیستم ایمنی همورال در بلدرچین ژاپنی بود. داده­های رشد (اوزان بدن (BW) در سنین 25، 30، 35، 40 و 45 روزگی و همچنین متوسط افزایش وزن بدن (ADG) در دوره­های 5 روزه) و پاسخ سیستم ایمنی (عیار آنتی‌بادی علیه SRBC (IgT) و واکسن نیوکاسل (IgN)) مورد بررسی قرار گرفت. از تجزیه و تحلیل چند صفتی با استفاده از روش نمونه­گیری گیبس به کمک نرم‌افزار Gibbsf90 برای برآورد پارامترهای ژنتیکی استفاده شد. دامنه وراثت­پذیری­های برای صفات BW و ADG به‌ترتیب 437/0-303/0 و 338/0- 053/0 بود. وراثت­پذیری برای صفات IgT و IgN نیز به‌ترتیب 252/0 و 015/0 برآورد شد. همبستگی ژنتیکی صفات رشد با پاسخ­های ایمنی منفی و از کم تا متوسط برآورد شد (218/0- تا 483/0-). با توجه به نتایج، انتخاب ژنتیکی برای صفات وزن بدن نسبت به صفات افزایش وزن و ایمنی می‌تواند پاسخ ژنتیکی بالاتری را در پی داشته باشد. در بین صفات وزن بدن، وزن 30 روزگی با توجه به همبستگی ژنتیکی بالا با BW45 (809/0)، وراثت­پذیری متوسط (406/0) و همبستگی ژنتیکی منفی و نسبتاً پایین با IgT (226/0-) و IgN (235/0-) می­تواند به عنوان معیار مناسبی جهت ارائه برنامه اصلاح نژادی به منظور بهبود صفات رشد و کاهش کم عملکرد سیستم  ایمنی باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Estimates of genetic parameters for body weights at late growth period and humoral ‎immunity in Japanese quail

نویسندگان [English]

  • Ayoub Mohammadi-Tighsiah 1
  • Ali Maghsoudi 2
  • Farzad Bagherzadeh-Kasmani 3
  • Mohammad Rokoei 3
  • Hadi Faraji-arough 4
1 Former M.Sc. Student, Department of Animal Science, Faculty of ‎Agriculture, University of Zabol, Zabol, Iran
2 Assistant Professor, Department of Animal Science, Faculty of Agriculture, University ‎of Zabol, Zabol, Iran
3 Associate Professor, Department of Animal Science, Faculty of Agriculture, University of Zabol, Zabol, Iran‎
4 Assistant Professor, Research Center of Special Domestic Animals, University of Zabol, Zabol, Iran
چکیده [English]

The aim of the current study was to estimate the genetic parameters of growth traits at the late ages (25-45 days of old) as well as humoral immune responses in Japanese quail. Therefore, the studied traits were growth traits (body weights (BW) at 25, 30, 35, 40 and 45 days of age, average daily gain (ADG) in 5 day periods as well as the immune system responses against SRBC (IgT) and Newcastle vaccine (IgN)). To estimate genetic parameters, a multivariate analysis was utilized using Gibbs sampling through Gibbsf90 software. The heritability for BW and ADG were varied between 0.303-0.437 and 0.053-0.338, respectively. Moreover, heritability estimates for IgT and IgN were 0.252 and 0.015, respectively. Genetic correlation between growth traits with immune responses were negative and ranged from low to moderate (−0.218 to −0.483). According to the results, genetic selection based on BWs might to result in higher genetic response than ADG and immune system performances. Among body weight traits, the BW30 based on its higher genetic correlation with BW45 (0.809), moderate heritability (0.406) and negative and relatively low genetic correlation with IgT (−0.226) and IgN (−0.235) would be consider as an appropriate criterion introduce applicable breeding program to improve growth traits with lower decreasing in the immune system performance.

کلیدواژه‌ها [English]

  • Body weight
  • genetic correlation
  • Gibbs sampling
  • heritability
  • SRBC
  1. Aggrey, S. E. & Cheng, K. M. (1994). Animal model analysis of genetic (co)variances for growth traits in Japanese quail. Poultry Science, 73, 1822-1828.
  2. Bao, M., Bovenhuis, H., Nieuwland, M. G., Parmentier, H. K. & van der Poel, J. J. (2016). Genetic parameters of IgM and IgG antibodies binding autoantigens in healthy chickens. Poultry Science, 95, 458-465.
  3. Barbieri, A., Ono, R. K., Cursino, L. L., Farah, M. M., Pires, M. P., Bertipaglia, T. S., Pires, A. V., Cavani, L., Carreno, L. O. & Fonseca, R. (2015). Genetic parameters for body weight in meat quail. Poultry Science, 94, 169-171.
  4. Bovenhuis, H., Bralten, H., Nieuwland, M. G. & Parmentier, H. K. (2002). Genetic parameters for antibody response of chickens to sheep red blood cells based on a selection experiment. Poultry Science, 81, 309-315.
  5. Buitenhuis, A. J., Rodenburg, T. B., Wissink, P. H., Visscher, J., Koene, P., Bovenhuis, H., Ducro, B. J. & van der Poel, J. J. (2004). Genetic and phenotypic correlations between feather pecking behavior, stress response, immune response, and egg quality traits in laying hens. Poultry Science, 83, 1077-1082.
  6. Cunningham, C. H. (1971). Virologia Practica, 6th edn. Acribia, Zaragoza, pp. 260.
  7. Dunnington, E. A., Honaker, C. F., McGilliard, M. L. & Siegel, P. B. (2013). Phenotypic responses of chickens to long-term, bidirectional selection for juvenile body weight-historical perspective. Poultry Science, 92, 1724-1734.
  8. Faraji-Arough, H., Rokouei, M., Maghsoudi, A. & Ghazaghi, M. (2018). Comparative study of growth patterns in seven strains of Japanese quail using nonlinear regression modeling. Turkish Journal of Veterinary and Animal Science, 42, 441-451.
  9. Faraji-Arough, H., Rokouei, M., Maghsoudi, A. & Mehri, M. (2019). Evaluation of Non- linear Growth Curves Models for Native Slow-growing Khazak Chickens. Poultry Science Journal, 7, 25-32.
  10. Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In: J. M. Bernardo, J. O. Berger, A. P. Dawid & A. F. M. Smith (eds.) Bayesian statistics No. 4. p 169-193. Oxford Univ. Press, Oxford, UK.
  11. Ghorbani, S., Tahmoorespur, M., Maghsoudi, A. & Abdollahi-Arpanahi, R. (2013). Estimates of (co)variance components for production and reproduction traits with different models in Fars native fowls. Livestock Science, 151, 115-123.
  12. Gous, R. M. & Cherry, P. (2004). Effects of body weight at, and lighting regimen and growth curve to, 20 weeks on laying performance in broiler breeders. British Poultry Science, 45, 445-452.
  13. Iranmanesh, M., Esmailizadeh, A., Mohammad Abadi, M. R., Zand, E., Mokhtari, M. S. & Wu, D. D. (2016). A molecular genome scan to identify DNA segments associated with live weight in Japanese quail. Molecular Biology Reports, 43, 1267-1272.
  14. Khaldari, M., Pakdel, A., Mehrabani Yeganeh, H., Nejati Javaremi, A. & Berg, P. (2010). Response to selection and genetic parameters of body and carcass weights in Japanese quail selected for 4-week body weight. Poultry Science, 89, 1834-1841.
  15. Labaque, M. C., Martella, M. B., Maestri, D. M. & Navarro, J. L. (2013). The influence of diet composition on egg and chick traits in captive Greater Rhea females. British Poultry Science, 54, 374-380.
  16. Lwelamira, J. (2012). Phenotypic and genetic parameters for body weights and antibody response against Newcastle disease virus (NDV) vaccine for Kuchi chicken ecotype of Tanzania under extensive management. Tropical Animal Health and Production, 44, 1529-1534.
  17. Lwelamira, J., Kifaro, G. C. & Gwakisa, P. S. (2009). Genetic parameters for body weights, egg traits and antibody response against Newcastle Disease Virus (NDV) vaccine among two Tanzania chicken ecotypes. Tropical Animal Health and Production, 41, 51-59.
  18. Misztal, I. (2012). BLUPF90 - a flexible mixed model program in Fortran 90.
  19. Mohammadabadi, M. R., Nikbakhti, M., Mirzaee, H. R., Shandi, A., Saghi, D. A., Romanov, M. N. & Moiseyeva, I. G. (2010). Genetic variability in three native Iranian chicken populations of the Khorasan province based on microsatellite markers. Russian Journal of Genetics, 46, 505-509.
  20. Mohammadi-Tighsiah, A., Maghsoudi, A., Bagherzadeh-Kasmani, F., Rokouei, M. & Faraji-Arough, H. (2018). Bayesian analysis of genetic parameters for early growth traits and humoral immune responses in Japanese quail. Livestock Science, 216, 197-202.
  21. Narinc, D., Karaman, E. & Aksoy, T. (2014). Effects of slaughter age and mass selection on slaughter and carcass characteristics in 2 lines of Japanese quail. Poultry Science, 93, 762-769.
  22. Nasirifar, E., Talebi, M., Esmailizadeh, A. K., Moradian, H., Sohrabi, S. S. & Askari, N. (2016). A chromosome-wide QTL mapping on chromosome 2 to identify loci affecting live weight and carcass traits in F2 population of Japanese quail. Czech Journal of Animal Science, 61, 290-297.
  23. Ori, R. J., Esmailizadeh, A. K., Charati, H., Mohammadabadi, M. R. & Sohrabi, S. S. (2014). Identification of QTL for live weight and growth rate using DNA markers on chromosome 3 in an F2 population of Japanese quail. Molecular Biology Reports, 41, 1049-1057.
  24. Saatci, M., Omed, H. & Ap Dewi, I. (2006). Genetic parameters from univariate and bivariate analyses of egg and weight traits in Japanese quail. Poultry Science, 85, 185-190.
  25. Sarker, N., Tsudzuki, M., Nishibori, M. & Yamamoto, Y. (1999). Direct and correlated response to divergent selection for serum immunoglobulin M and G levels in chickens. Poultry Science, 78, 1-7.
  26. Shokoohmand, M., Emam Jomeh Kashan, N. & Emami Maybody, M. A. (2007). Estimation of heritability and genetic correlations of body weight in different age for three strains of japanese quail. International Journal of Agricultural Biology, 9(6), 945-947.
  27. Siegel, P. B. & Honaker, C. F. (2009). Impact of genetic selection for growth and immunity on resource allocations. The Journal of Applied Poultry Research, 18, 125-130.
  28. Sohrabi, S. S., Esmailizadeh, A. K., Baghizadeh, A., Moradian, H., Mohammadabadi, M. R., Askari, N. & Nasirifar, E. (2012). Quantitative trait loci underlying hatching weight and growth traits in an F2 intercross between two strains of Japanese quail. Animal Production Science, 52, 1012-1018.
  29. Sun, Y., Ellen, E. D., Parmentier, H. K. & van der Poel, J. J. (2013). Genetic parameters of natural antibody isotypes and survival analysis in beak-trimmed and non-beak-trimmed crossbred laying hens. Poultry Science, 92, 2024-2033.
  30. van der Klein, S. A., Berghof, T. V., Arts, J. A., Parmentier, H. K., van der Poel, J. J. & Bovenhuis, H. (2015). Genetic relations between natural antibodies binding keyhole limpet hemocyanin and production traits in a purebred layer chicken line. Poultry Science, 94, 875-882.
  31. Wegmann, T. G. & Smithies, O. (1966). A Simple hemagglutination system requiring small amounts of red cells and antibodies. Transfusion, 6, 67-73.
  32. Wijga, S., Parmentier, H. K., Nieuwland, M. G. & Bovenhuis, H. (2009). Genetic parameters for levels of natural antibodies in chicken lines divergently selected for specific antibody response. Poultry Science, 88, 1805-1810.
  33. Yunis, R., Ben-David, A., Heller, E. D. & Cahaner, A. (2002). Antibody responses and morbidity following infection with infectious bronchitis virus and challenge with Escherichia coli, in lines divergently selected on antibody response. Poultry Science, 81, 149-159.