مقایسه اثر دو نوع پروبیوتیک متفاوت بر فراسنجه‌های بیوشیمیایی و هورمونی خون، و عملکرد رشد گوساله‌های شیرخوار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد فیزیولوژی دام، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج

2 استاد، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج

3 دانشیار، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج

چکیده

آزمایش حاضر به­منظور مقایسه اثر دو نوع پروبیوتیک متفاوت چند سویه­ای بر عملکرد رشد، فراسنجه­های بیوشیمیایی و هورمونی خون مورد مطالعه قرار گرفتند. برای این منظور تعداد 21 راس گوساله­ی نر و ماده هلشتاین در سن سه روزگی استفاده شد. گوساله­های هلشتاین به‌طور تصادفی به یکی از سه تیمار شامل شاهد (بدون دریافت پروبیوتیک)، پروبیوتیک پروتکسین و پروبیوتیک دی­پرو اختصاص داده شدند. ماده خشک مصرفی به صورت روزانه و وزن بدن در روزهای صفر، 20، 40 و 60 ثبت شد. نمونه­های خون در روزهای صفر، 30 و 60 به منظور ارزیابی فراسنجه­های بیوشیمیایی و هورمونی جمع­آوری شد. ضریب تبدیل خوراک در گروه دریافت کننده پروبیوتیک دی­پرو کمتر از شاهد بود (05/0P<)، ولی میانگین افزایش وزن روزانه و مصرف خوراک در بین گروه­ها اختلاف معنی­داری نداشت. غلظت کورتیزول در گروه دی­پرو کمتر از گروه پروتکسین و T3 پلاسما در گروه پروتکسین بیشتر از دو گروه دیگر بود (05/0P<)، اگرچه سایر فراسنجه­های خونی تفاوت معنی­داری نداشتند. نتایج نشان می دهد پروبیوتیک دی­پرو می تواند عملکرد رشد را با کاهش ضریب تبدیل غذایی در گوساله­های شیرخوار هلشتاین بهبود بخشد.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of two different probiotics effects on blood biochemical and hormonal parameters, and growth performance in suckling calves

نویسندگان [English]

  • Morteza Sabbaghi Feriz 1
  • Armin Towhidi 2
  • Mahdi Zhandi 3
  • Mahdi Dehghan Banadaki 2
  • Nasim Vakili 1
1 M. Sc. Student, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
2 Professor, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
3 Associate Professor, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
چکیده [English]

This study was conducted to compare the influence of two kind of multi species probiotic on growth performance and biochemical and hormonal blood parameters. 21 male and female animals were used in thrid day of age. They were randomly allocated to 1 of 3 treatments including: control (without probiotic), probiotic Protexin and probiotic Di-pro. Dry mater intake was daily determined and body weight was measured on days 0, 20, 40 and 60. Blood samples were obtained on days 0, 30 and 60 to assess biochemical and hormonal parameters. Feed conversion ratio was lower (P<0.05) in Di-pro but there were no differences in average daily gain and dry mater intake compared to the other groups. Plasma cortisol level decreased in Di-Pro (P<0.05), and plasma T3 concentration increased in Protexin (P<0.05) compared to the other groups, while other blood parameters did not have any significant differences. The results suggest that probiotic Di-pro may improve growth performance by decreasing the feed conversion ratio in suckling Holstein calves.

کلیدواژه‌ها [English]

  • Feed efficiency
  • probiotic
  • Suckling calves
  1. Abe, F., Ishibashi, N. & Shimamura, S. (1995). Effect of Administration of Bifidobacteria and Lactic Acid Bacteria to Newborn Calves and Piglets. Journal of Dairy Science, 78(12), 2838-2846.
  2. Abney, M. D. (2001). Effects of feeding direct-fed microbials and prebiotics on receiving calf performance, health, and fecal shedding of pathogens. Texas Tech University.
  3. Abu-Tarboush, H. M., Al-Saiady, M. Y. & Keir El-Din, A. H. (1996). Evaluation of diet containing lactobacilli on performance, fecal coliform, and lactobacilli of young dairy calves. Animal Feed Science and Technology, 57(1-2), 39-49.
  4. Agarwal, N., Kamra, D. N., Chaudhary, L. C., Agarwal, I., Sahoo, A. & Pathak, N. N. (2002). Microbial status and rumen enzyme profile of crossbred calves fed on different microbial feed additives. Letters in Applied Microbiology, 34(5), 329-336.
  5. Agazzi, A., Tirloni, E., Stella, S., Maroccolo, S., Ripamonti, B., Bersani, C., … Savoini, G. (2014). Effects of species-specific probiotic addition to milk replacer on calf health and performance during the first month of life. Annals of Animal Science, 14(1), 101-115.
  6. Alexopoulos, C., Georgoulakis, I. E., Tzivara, A., Kritas, S. K., Siochu, A. & Kyriakis, S. C. (2004). Field evaluation of the efficacy of a probiotic containing Bacillus licheniformis and Bacillus subtilis spores, on the health status and performance of sows and their litters. Journal of Animal Physiology and Animal Nutrition, 88(11‐12), 381-392.
  7. Aliakbarpour, H. R., Chamani, M., Rahimi, G., Sadeghi, A. A. & Qujeq, D. (2012). The Bacillus subtilis and lactic acid bacteria probiotics influences intestinal mucin gene expression, histomorphology and growth performance in broilers. Asian-Australasian Journal of Animal Sciences, 25(9), 1285.
  8. Bayatkouhsar, J., Tahmasebi, A. M., Naserian, A. A., Mokarram, R. R. & Valizadeh, R. (2013). Effects of supplementation of lactic acid bacteria on growth performance, blood metabolites and fecal coliform and lactobacilli of young dairy calves. Animal Feed Science and Technology, 186(1-2), 1-11.
  9. Beauchemin, K. A., Yang, W. Z., Morgavi, D. P., Ghorbani, G. R., Kautz, W. & Leedle, J. A. Z. (2003). Effects of bacterial direct-fed microbials and yeast on site and extent of digestion, blood chemistry, and subclinical ruminal acidosis in feedlot cattle. Journal of Animal Science, 81(6), 1628-1640.
  10. Chateau, N., Castellanos, I. & Deschamps, A. M. (1993). Distribution of pathogen inhibition in the Lactobacillus isolates of a commercial probiotic consortium. Journal of Applied Bacteriology, 74(1), 36-40.
  11. Chaudhary, L. C., Sahoo, A., Agrawal, N., Kamra, D. N. & Pathak, N. N. (2008). Effect of direct fed microbials on nutrient utilization, rumen fermentation, immune and growth response in crossbred cattle calves. Indian Journal of Animal Science, 78, 515-521.
  12. Cruywagen, C. W., Jordaan, I. & Venter, L. (1996). Effect of Lactobacillus acidophilus Supplementation of Milk Replacer on Preweaning Performance of Calves. Journal of Dairy Science, 79(3), 483-486.
  13. Donovan, D. C., Franklin, S. T., Chase, C. C. L. & Hippen, A. R. (2002). Growth and Health of Holstein Calves Fed Milk Replacers Supplemented with Antibiotics or Enteroguard. Journal of Dairy Science, 85(4), 947-950.
  14. Fayed, A.M., M.A.Ei. Ashry, K.M. Yossef and F.A. Salem. (2005). Effect of feeding flavomycin or yeast feed supplement on ruminal fermentation and some blood constituents of sheep in Sinai. Egyptian Journal of Nutrition and Feeds, 8: 619-634.
  15. Frizzo, L. S., Soto, L. P., Zbrun, M. V., Signorini, M. L., Bertozzi, E., Sequeira, G., … Rosmini, M. R. (2011). Effect of lactic acid bacteria and lactose on growth performance and intestinal microbial balance of artificially reared calves. Livestock Science, 140(1-3), 246-252.
  16. Fuller, R. (1999). Probiotics for farm animals. Probiotics: A Critical Review.
  17. Galvão, K. N., Santos, J. E. P., Coscioni, A., Villaseñor, M., Sischo, W. M. & Berge, A. C. B. (2005). Effect of feeding live yeast products to calves with failure of passive transfer on performance and patterns of antibiotic resistance in fecal Escherichia coli. Reproduction Nutrition and Development, 45(4), 427-440.
  18. Gould, A. R., May, B. K. & Elliott, W. H. (1975). Release of extracellular enzymes from Bacillus amyloliquefaciens. Journal of Bacteriology, 122(1), 34-40.
  19. Gracia, M. I., Aranibar, M., Lazaro, R., Medel, P. & Mateos, G. G. (2003). Alpha-amylase supplementation of broiler diets based on corn. Poultry Science, 82(3), 436-442.
  20. Hosseinabadi, M.,  Dehghan-Banadaky, M and Zali A. (2013).The Effect of Feeding of Bacterial Probiotic in Milk or Starter on Growth Performance, Health, Blood and Rumen Parameters of Suckling Calves. Research on Animal Production Vol.4, No. 8.
  21. Jenny, B. F., Vandijk, H. J. & Collins, J. A. (1991). Performance and Fecal Flora of Calves Fed a Bacillus subtilis Concentrate. Journal of Dairy Science, 74(6), 1968-1973.
  22. Kogan, G. & Kocher, A. (2007). Role of yeast cell wall polysaccharides in pig nutrition and health protection. Livestock Science, 109(1-3), 161-165.
  23. Kowalski, Z. M., Górka, P., Schlagheck, A., Jagusiak, W., Micek, P. & Strzetelski, J. (2009). Performance of Holstein calves fed milk-replacer and starter mixture supplemented with probiotic feed additive. Journal of Animal and Feed Sciences, 18(3), 399-411.
  24. Krehbiel, C. R., Rust, S. R., Zhang, G. & Gilliland, S. E. (2003). Bacterial direct-fed microbials in ruminant diets: Performance response and mode of action 1,2. Journal of Animal Science, 81(2), 120-132.
  25. Laborde, J. M. (2008). Effects of probiotics and yeast culture on rumen development and growth of dairy calves.
  26. Lee, S. H., Ingale, S. L., Kim, J. S., Kim, K. H., Lokhande, A., Kim, E. K., … Chae, B. J. (2014). Effects of dietary supplementation with Bacillus subtilis LS 1–2 fermentation biomass on growth performance, nutrient digestibility, cecal microbiota and intestinal morphology of weanling pig. Animal Feed Science and Technology, 188, 102-110.
  27. Lee, Y.-J., Kim, B.-K., Lee, B.-H., Jo, K.-I., Lee, N.-K., Chung, C.-H., … Lee, J.-W. (2008). Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresource Technology, 99(2), 378-386.
  28. Lisboa, M. P., Bonatto, D., Bizani, D., Henriques, J. A. P. & Brandelli, A. (2006). Characterization of a bacteriocin-like substance produced by Bacillus amyloliquefaciens isolated from the Brazilian Atlantic forest. International Microbiology, 9(2), 111-118.
  29. Mehrdad, N., Chashnidel, Y., A. T. Y. and M. K. (n.d.). (2017). Effects of two kinds of probiotics on performance, blood and ruminal parameters in Holstein male calves, 4, 23–44.
  30. Mesgaran,  D., Torbatinejad, N.,  Hassani, S.,  Gharagozloo, A.,  Jafarpour, J and Roshanak. (2008). Influence of Protein-rich or Probiotic-containing Feeds on Holistic Calf Production Indicators. the 3rd Congress of Animal Science of the country.
  31. Morrill, J. L., Dayton, A. D. & Mickelsen, R. (1977). Cultured Milk and Antibiotics for Young Calves1. Journal of Dairy Science, 60(7), 1105-1109.
  32. Morrill, J. L., Morrill, J. M., Feyerherm, A. M. & Laster, J. F. (1995). Plasma Proteins and a Probiotic as Ingredients in Milk Replacer1. Journal of Dairy Science, 78(4), 902-907.
  33. Moslemipur,  F., Moslemipur, F. & Mostafaloo, Y. (2014). Effects of using probiotic and synbiotic in colostrum and milk on passive immunoglobulin transfer rate, growth and health parameters of calf. Journal of Ruminant Research, 1 (4).
  34. Nakanishi, Y. (1993). Effects of feeding Lactobacillus acidophilus yogurt on performance and behavior of dairy calves. Journal of Dairy Science, 76(1), 244.
  35. Nemati, A., S.N. Tabatabaie, A. Davar Frouzandekey Shahraki and Sh. Eghbal Saeed. 2010. Comparison effect of Saccharomyces cerevisiae yeast and Protexin probiotic in starter on blood parameter, Immunity blood, behavior and fecal score in suckling calves. The 4th congress on Animal Science, Karaj, Iran, 2141-2144 pp.
  36. Ng, S. C., Hart, A. L., Kamm, M. A., Stagg, A. J. & Knight, S. C. (2008). Mechanisms of action of probiotics: recent advances. Inflammatory Bowel Diseases, 15(2), 300-310.
  37. Nousiainen, J. (1993). Lactic acid bacteria as animal probiotics. Lactic Acid Bacteria.
  38. Pluske, J. R., Thompson, M. J., Atwood, C. S., Bird, P. H., Williams, I. H. & Hartmann, P. E. (1996). Maintenance of villus height and crypt depth, and enhancement of disaccharide digestion and monosaccharide absorption, in piglets fed on cows’ whole milk after weaning. British Journal of Nutrition, 76(3), 409-422.
  39. Quigley III, J. D., Wallis, L. B., Dowlen, H. H. & Heitmann, R. N. (1992). Sodium bicarbonate and yeast culture effects on ruminal fermentation, growth, and intake in dairy calves. Journal of Dairy Science, 75(12), 3531-3538.
  40. Quigley, J. D., Drewry, J. J., Murray, L. M. & Ivey, S. J. (1997). Body weight gain, feed efficiency, and fecal scores of dairy calves in response to galactosyl-lactose or antibiotics in milk replacers. Journal of Dairy Science, 80(8), 1751-1754.
  41. Radcliff, R. P., Lookingland, K. J., McMahon, C. D., Chapin, L. T. & Tucker, H. A. (2003). Thyrotropin-releasing hormone mediates serotonin-induced secretion of GH in cattle. Domestic Animal Endocrinology, 24(2), 137-153.
  42. Riddell, J. B., Gallegos, A. J., Harmon, D. L. & McLeod, K. R. (2010). Addition of a Bacillus based probiotic to the diet of preruminant calves: Influence on growth, health, and blood parameters1, 2, 3.
  43. Rolfe, R. D. (2000). The role of probiotic cultures in the control of gastrointestinal health. The Journal of Nutrition, 130(2), 396S-402S.
  44. Roodposhti, P. M. & Dabiri, N. (2012). Effects of probiotic and prebiotic on average daily gain, fecal shedding of Escherichia coli, and immune system status in newborn female calves. Asian-Australasian Journal of Animal Sciences, 25(9), 1255-1261.
  45. Rust, S. R., Metz, K. & Ware, D. R. (2000). Effects of BovamineTM rumen culture on the performance and carcass characteristics of feedlot steers. Journal of Animal Science, 78(Suppl 2), 82.
  46. Sandine, W. E. (1979). Roles of Lactobacillus in the intestinal tract. Journal of Food Protection, 42(3), 259-262.
  47. Sun, P., Wang, J. Q. & Zhang, H. T. (2010). Effects of Bacillus subtilis natto on performance and immune function of preweaning calves. Journal of Dairy Science, 93(12), 5851-5855.
  48. Timmerman, H. M., Mulder, L., Everts, H., Van Espen, D. C., Van Der Wal, E., Klaassen, G., Rouwers, S. M. G., Hartemink, R., Rombouts, F. M. & Beynen, A. C. (2005). Health and growth of veal calves fed milk replacers with or without probiotics. Journal of Dairy Science, 88(6), 2154-2165.
  49. Tsukahara, T., Tsuruta, T., Nakanishi, N., Hikita, C., Mochizuki, M. & Nakayama, K. (2013). The preventive effect of B acillus subtilus strain DB 9011 against experimental infection with enterotoxcemic E scherichia coli in weaning piglets. Animal Science Journal, 84(4), 316-321.
  50. Ulyanova, V., Vershinina, V. & Ilinskaya, O. (2011). Barnase and binase: twins with distinct fates. The FEBS Journal, 278(19), 3633-3643.
  51. Valencia, G. L., Zapata-Ramirez, O., Nunez-Gonzalez, L., Nunez-Benitez, V., Landeros-Lopez, H., Lopez-Soto, M., … Zinn, R. (2017). Effective use of probiotic-glyconutrient combination as an adjuvant to antibiotic therapy for diarrhea in rearing dairy calves. Turkish Journal of Veterinary and Animal Sciences, 41(4), 578-581.
  52. Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science, 74(10), 3583-3597.
  53. Weese, J. S., Sharif, S. & Rodriguez-Palacios, A. (2008). Probiotics in veterinary medicine. In Therapeutic microbiology (pp. 341–356). American Society of Microbiology.
  54. Zhang, R., Dong, X., Zhou, M., Tu, Y., Zhang, N., Deng, K. & Diao, Q. (2017). Oral administration of Lactobacillus plantarum and Bacillus subtilis on rumen fermentation and the bacterial community in calves. Animal Science Journal, 88(5), 755-762.
  55. Zhang, R., Zhou, M., Tu, Y., Zhang, N. F., Deng, K. D., Ma, T. & Diao, Q. Y. (2016). Effect of oral administration of probiotics on growth performance, apparent nutrient digestibility and stress‐related indicators in Holstein calves. Journal of Animal Physiology and Animal Nutrition, 100(1), 33-38.
  56. Zhang, Z. F., Zhou, T. X., Ao, X. & Kim, I. H. (2012). Effects of β-glucan and Bacillus subtilis on growth performance, blood profiles, relative organ weight and meat quality in broilers fed maize–soybean meal based diets. Livestock Science, 150(1-3), 419-424.
  57. Zidek, Z., Tučková, L., Mara, M., Barot-Ciorbaru, R., Prokešovác, L. & Tlaskalova-Hogenova, H. (1998). Stimulation of macrophages by Bacillus firmus: production of nitric oxide and cytokines. International Journal of Immunopharmacology, 20(7), 359-368.