8954856055505db

اثر طرح های آمیزشی در پیشرفت ژنتیکی و افزایش میانگین همخونی: مطالعه ای مبتنی بر شبیه سازی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، گروه علوم دامی، باشگاه پژوهشگران جوان و نخبگان، دانشگاه آزاد اسلامی، واحد آستارا، آستارا، ایران

2 دانشجوی دکتری گروه علوم دامی دانشکده کشاورزی دانشگاه کردستان

چکیده

هدف از این مطالعه بررسی پیشرفت ژنتیکی، افزایش میانگین همخونی و پیش­بینی صحت ارزیابی تحت طرح­های آمیزشی مختلف با استفاده از شبیه­سازی بود. دو وراثت­پذیری مختلف (1/0 و 5/0) و پنج طرح آمیزشی شامل آمیزش تصادفی (rnd)، آمیزش براساس حداقل همخونی (minf)، آمیزش براساس حداکثر همخونی (maxf)، آمیزش جور شده مثبت براساس فنوتیپ (phen) و آمیزش جور شده­ مثبت براساس ارزش اصلاحی پیش­بینی­شده (ebv) در نظر گرفته شد. پیشرفت ژنتیکی بعد از ده نسل انتخاب در طرح­های آمیزشی rnd، minf، maxf، phen و ebv برای وراثت­پذیری 1/0 به­ترتیب 846/0، 747/0، 952/0، 877/0 و 023/1 واحد بود، و برای وراثت‌پذیری 5/0 به­ترتیب 979/2، 997/2، 016/3، 303/3 و 595/3 واحد بود. بعد از ده نسل انتخاب افزایش میانگین همخونی به­ازای هر نسل در طرح­های آمیزشی برای وراثت­پذیری 1/0، 10/0 در rnd، 038/0 در minf، 353/0 در maxf، 079/0 در phen و 215/0 در ebv بود، و برای وراثت­پذیری 5/0، 057/0 در rnd، 026/0 در minf، 356/0 در maxf، 092/0 در phen و 177/0 در ebv بود. نتایج نشان داد که پیشرفت ژنتیکی به ازای یک درصد افزایش در همخونی در طرح آمیزشی minf بیشتر از طرح­های آمیزشی دیگر بود و طرح آمیزشی minf عملکرد بهتری نسبت به طرح­های دیگر دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of mating designs on genetic gain and Increase of average inbreeding: A simulation study

نویسندگان [English]

  • Yousef Naderi 1
  • Maysam Latifi 2
1 Assistant Professor, Department of Animal Science, Young Researchers and Elite Club, Astara Branch, Islamic Azad University, Astara, Iran
2 PhD Student, Department of Animal Science, Faculty of Agricultural Sciences, University of Kordestan, Sanandaj, Iran
چکیده [English]

The purpose of this study was investigated the genetic gain, increase of average inbreeding and accuracy of prediction using simulated data under different mating designs. Two level of heritability (0.1 and 0.5) and five maing designs including random mating (rnd), mating based on minimum inbreeding (minf), mating based on maximum inbreeding (maxf),positive assortative mating design based on phenotype (phen) and positive assortative mating design based on estimated breeding value (ebv) were considered. The genetic gain after ten generation in rnd, minf, maxf, phen and ebv mating designs for heritability 0.1 were 0.836, 0.747, 0.952, 0.877 and 1.023 units, respectively, and for heritability 0.3 were 2.979, 2.997, 3.016, 3.303 and 3.595 units, respectively. After ten generation increase of average inbreeding for heritability 0.1 was 0.084 in rnd, 0.038 in minf, 0.353 in maxf, 0.079 in phen and 0.215 in ebv, and for heritability 0.3 was 0.057 in rnd, 0.026 in minf, 0.356 in maxf, 0.092 in phen and 0.177 in ebv, respectively. The results shoewd that the genetic gain in minf design was greater than others mating designs per 1% increase of inbreeding, and minf design was better than other mating designs.

کلیدواژه‌ها [English]

  • Breeding value
  • heritability
  • inbreeding
  • mating designs
  1. Bahri Binabaj, F., Faraji Arough, H., Rokuei, M., Jafari, M. & Sheikhlou, M. R. (2015). Estimation of inbreeding depression on growth correlated traits in Karakul lambs. Journal of Ruminant Research, 2, 137-156. (in Farsi)
  2. Belonsky, G. M. & Kennedy, B. W. (1988). Selection on individual phenotype and best linear unbiased predictor of breeding value in a closed swine herd. Journal of Animal Science, 66, 1124-1131.
  3. Bulmer, M. G. (1971). The Effect of Selection on Genetic Variability. The American Naturalist, 105 (943), 201-211.
  4. Clark, S. A., Hickey, J. M., Daetwyler, H. D.  & van der Werf, J. H. J.  (2012). The importance of information on relatives for the prediction of genomic breeding values and the implications for the makeup of reference data sets in livestock breeding schemes. Genetics Selection Evolution, 44, 4.
  5. Daetwyler, H. D., Villanueva, B., Bijma, P. & Woolliams, J. A. (2007). Inbreeding in genome-wide selection. Journal of Animal Breeding and Genetics, 124, 369-376.
  6. Gowane, G. R., Lee, S. H., Clark, S., Moghaddar, N., Al-Mamun, H. A. & van der Werf, J. H. J. (2018). Effect of selection on bias and accuracy in genomic prediction of breeding values. bioRxiv. Retrieved April 09, 2018, from https://www.biorxiv.org/content/10.1101/298042v1
  7. Hadfield, J. D. & Nakagawa, S. (2010). General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. Journal of Evolutionary Biology, 23, 494-508.
  8. Havenstein, G. B., Ferket, P. R., Scheideler, S. E. & Larson, B. T. (1994). Growth, livability, and feed conversion of 1957 vs 1991 broilers when fed ‘typical’ 1957 and 1991 broiler diets. Poultry Science, 73, 1785-1794.
  9. Karimi, K., Sargolzaei, M., Plastow, G. S., Wang, Z. & Miar, Y. (2019). Opportunities for genomic selection in American mink: A simulation study. PLoS ONE, 14(3), e0213873.
  10. Meuwissen, T. H. E. (1997). Maximizing the response of selection with a prede-ned rate of inbreeding, Journal of Animal Science, 75, 934-940.
  11. Nirea, K. G., Sonesson, A. K., Woolliams, J. A. & Meuwissen, T. H. (2012). Effect of non-random mating on genomic and BLUP selection schemes. Genetics Selection Evolution, 44, 11.
  12. Rauw, W. M., Kanis, E., Noordhuizen-Stassen, E. N. & Grommers, F. J. (1998).Undesirable side effects of selection for high production efficiency in farm animlas: a review. Libvestock Production Science, 56, 15-33.
  13. Sargolzaei, M. & Schenkel, F. S. (2009). QMSim: a large scale genome simulator for livestock. Bioinformatics, 25, 680-681.
  14. Smith, L. A., Cassell, B. G.  & Pearson, R. E. (1998). The effects of inbreeding on the lifetime performance of dairy cattle. Journal of Dairy Science, 81, 2729-2737.
  15. Sonesson, A & Meuwissen, T. (2002). Non-random mating for selection with restricted rates of inbreeding and overlapping generations. Genetics Selection Evolution, 34 (1), 23-39.
  16. Weigel, K. A. (2001). Controlling inbreeding in modern breeding programs. Journal of Dairy Science, 84(E. Suppl.), E177-E184.
  17. Yin, T., Pimentel, E. C. G., König v Borstel, U. & König, S. (2014). Strategy for the simulation and analysis of longitudinal phenotypic and genomic data in the context of a temperature × humidity-dependent covariate. Journal of Dairy Science, 97, 2444-2454.