جستجوی نشانه‌های انتخاب بین گاومیش‌های آذری و مازندرانی با استفاده از نشانگرهای SNP با تراکم زیاد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه علوم دامی دانشگاه ارومیه، ارومیه، ایران

2 استاد، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

3 دانشیار، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

4 استادیار، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

5 استادیار، مؤسسه تحقیقات علوم دامی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

چکیده

به­منظور یافتن نشانه­های انتخاب بر روی ژنوم گاومیش از 287 رأس گاومیش رودخانه­ای شامل 260 رأس آذری و 27 رأس مازندرانی استفاده شد. ژنوتیپ نمونه­ها به­وسیله­ آرایه­های ژنومی Axiom® Buffalo Genotyping 90K تعیین شد و برآوردگر نااریب FST (θ) برای یافتن نشانه­های انتخاب مورد استفاده قرار گرفت. در مجموع 14 منطقه که نشانگرهای SNP آن­ها بالاتر از 1/0 درصد حد بالای توزیع تجربی FST بودند، به­عنوان نشانه­های انتخاب شناسایی شدند. بعد از انطباق مناطق ژنومی انتخاب شده با مناطق­ژنومی متناظر آن روی ژنوم گاو (UMD3.1 Bos Taurus Genome)، 105 ژن و 28 QTL شناسایی شد. از مجموع 105 ژن شناسایی شده در مناطق ژنومی تحت­ انتخاب، 27 ژن مربوط به گیرنده­های بویایی بودند. همچنین یک­سری از ژن­های شناسایی شده در رشد و توسعه بافت­های بدنی، مرگ­و­میر سلولی، سیستم ایمنی بدن و توسعه بافت­های پستانی نقش دارند. بررسی­ها هم­چنین نشان داد که QTL­های شناسایی شده در این مطالعه عمدتاً با صفات مربوط به رشد از قبیل وزن بدن در تولد، شیرگیری و بلوغ، چربی زیرپوستی، تولید گوشت لخم و وزن لاشه ارتباط دارد. QTL­های مرتبط با تولید شیر، فقط با کیفیت شیر و تعداد سلول­های شیر ارتباط دارند. در هر صورت، توصیه می­شود جهت شناسایی نقش دقیق این ژن­ها و QTL­ها بایستی مطالعات ارتباطی انجام گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Detection of selection signatures in Azeri and Mazandrani buffalo populations by high density SNP markers

نویسندگان [English]

  • Mahdi Mokhber 1
  • Mohammad Moradi Shahre Babak 2
  • Mostafa Sadeghi 3
  • Hossein Moradi Shahrbabak 4
  • Javad Rahmani-Nia 5
1 Assistant Professor, Department of Animal Science, Faculty of Agricultural Science, Urmia university, Urmia, Iran
2 Professor, Department of Animal Science, College of Agriculture & Natural Resources (UTCAN), University of Tehran, Karaj, Iran
3 Associated Professor, Department of Animal Science, College of Agriculture & Natural Resources (UTCAN), University of Tehran, Karaj, Iran
4 Assistant Professor, Department of Animal Science, College of Agriculture & Natural Resources (UTCAN), University of Tehran, Karaj, Iran
5 Assistant Professor, Department of Animal Breeding and Genetics, Animal Science Research institute of Iran (ASRI), Karaj, Iran
چکیده [English]

In order to detect signature of selection on buffalo genome, a set of 287 water buffalo samples from 260 Azari and 27 Mazandarani buffalo breeds were genotyped using the Axiom® Buffalo Genotyping 90K Array. The unbiased fixation index method (FST) was used to detect signatures of selection. In total, 14 regions with outlier FST values (0.1%) were identified. Annotation of these regions using the UMD3.1 Bos taurus Genome Assembly was performed to find putative candidate genes and QTLs within the selected and 105 genes and 28 QTLs with selection signatures were detected. A high proportion of identified genes (N=27) in regions under selection were involved in olfactory receptor, also some of the detected genes were associated with growth and body development, metabolicand apoptosis possesses, immune system development, and mammary gland development. Some of the identified QTLs in regions under selection were associated with growth traits such as body weight at birth, weaning and mature, subcutaneous fat, meat yield and carcass weight. The detected QTL for milk traits were only associated with milk contents and somatic cell count. However, it is recommended to carry out association studies to show the actual function of these genes.

کلیدواژه‌ها [English]

  • Azeri and Mazandrani buffalo breeds
  • Genotyping Array
  • population differentiation index
  1. Ache, B. W. & Young, J. M. (2005). Olfaction: Diverse Species, Conserved Principles. Neuron, 48, 417–430. Akey, J. M. (2009). Constructing genomic maps of positive selection in humans: Where do we go from here?. Genome Research, 19, 711-722.
  2. AGRI. (2014). http://amar.maj.ir
  3. Akey, J. M., Zhang, G., Zhang, K., Jin, L. & Shriver, M. D. (2002). Interrogating a high-density SNP map for signatures of natural selection. Genome Research, 12(12), 1805-1814.
  4. Alberts, C. C., Ribeiro-Paes, J. T., Aranda-Selverio, G., Cursino-Santos, J. R., Moreno-Cotuli, V. R., Oliveir, A. L. D., Santos Departamento, W. F. & Souza, E. B. (2010). DNA extraction from hair shafts of wild Brazilian felids and canids. Genetics and Molecular Research, 9 (4), 2429-2435.
  5. Alexander, C. M., Goel, S., Fakhraldeen, S. A. & Kim, S. (2012). Wnt signaling in mammary glands: plastic cell fates and combinatorial signaling. Cold Spring Harb Perspect Biol, 4(10), 8037-8042.
  6. Amaral, M. E., Owens, K. E., Elliott, J. S., Fickey, C. & Schaffer, A. A. (2007). Construction of a river buffalo (Bubalus bubalis) whole-genome radiation hybrid panel and preliminary RH mapping of chromosomes 3 and 10. Animal Genetics, 38, 311-314
  7. Amato, R., Pinelli, M., Monticelli, A., Marino, D., Miele, G. & Cocozza, S. (2009). Genome-Wide Scan for Signatures of Human Population Differentiation and Their Relationship with Natural Selection, Functional Pathways and Diseases. PloS ONE, 4(11), 7927-7933.
  8. Ashwell, M. S., Heyen, D. W., Sonstegard, T. S., Van-Tassell, C. P., Da, Y., VanRaden, P. M., Ron, M., Weller, J. I. & Lewin, H. A. (2004). Detection of quantitative trait loci affecting milk production, health, andreproductive traits in Holstein cattle. Journal of Dairy Science, 87(2), 468-475.
  9. Azizi, Z., Rafat, A., Shoja, J., Moradi Shahrbabak, H. & Moradi Shahrbabak, M. (2016). Study of population structure and stratification two ecotypes buffalo with dense single nucleotide polymorphism markers using Admixture, MDS, PCA and GC methods. Journal of Agricultural Biotechnology, 8(2), 53-67.
  10. Bernard, C., Cassar-Malek, I., Le Cunff, M., Dubroeucq, H., Renand, G. & Hocquette, J. F. (2007). New indicators of beef sensory quality revealed by expression of specific genes. Journal of Agricultural and Food Chemistry, 55, 5229-5237.
  11. Barendse, W., Harrison, B. E., Bunch, R. J., Thomas, M.  B. & Turner, L. B. (2009). Genome wide signatures of positive selection, the comparison of independent samples and the identification of regions associated to traits. BMC Genomics, 10, 178-192.
  12. Biswas, S. & Akey, J. M. (2006). Genomic insights into positive Selection. Trends in Genetics, 22(8), 437-436.
  13. Borghese, A. (2005). Buffalo Production and Research. FAO. 315.
  14. Borghese, A. (2011). Situation and perspectives of buffalo in the world, Europe and Macedonia. Macedonian Journal of Anim Science, 1(2), 281-296.
  15. Buitenhuis, B., Janss, L. L., Poulsen, N. A., Larsen, L. B., Larsen, M. K. & Sørensen, P. (2014). Genome-wide association and biological pathway analysis for milk-fat composition in Danish Holstein and Danish Jersey cattle. BMC genomics, 15(1), 1112-1118.
  16. Campbell, A. M., Williamson, J., Padula, D. & Sundby, S. (1997). Use PCR & Single Hair to produce a “DNA Fingerprint”. The American Biology Teacher, 59(3), 172-178.
  17. Chen, R., Irwin, D. M. & Zhang, Y. P. 2012. Differences in Selection Drive Olfactory Receptor Genes in Different Directions in Dogs and Wolf. Molecular Biology and Evolution, 29, 3475-3484.
  18. Cole, J., Van-Raden, P., O’Connell, J., Van-Tassell, C., Sonstegard, T., Schnabel, R., Taylor, J. & Wiggans, G. (2009). Distribution and location of genetic effects for dairy traits. Jornal of Dairy Science, 92(6), 2931-2946.
  19. Daetwyler, H. D., Schenkel, F. S., Sargolzaei, M. & Robinson, J. A. B. (2008). A genome scan to detect quantitative trait loci for economically important traits in Holstein cattle using two methods and a dense single nucleotide polymorphism map. Journal of Dairy Science, 91 (8), 3225-36.
  20. Doran, A. G., Berry, D. P. & Creevey, C. J. (2014). Whole genome association study identifies regions of the bovine genome and biological pathways involved in carcass trait performance in Holstein-Friesian cattle. BMC genomics, 15, 837-843.
  21. Ensembl BioMart: Ensembl online genome database BioMart Tool. http://www.ensembl.org/biomart/martview/.
  22. EntrezGene: NCBI Resources EntrezGene. http://www.ncbi.nlm.nih.gov/.
  23. FAO. (2013). FAO statistics website. http://www.fao.org/statistics/en/
  24. FAO. (2014). FAO statistics website. http://www.fao.org/statistics/en/
  25. Gibbs, R. A., Taylor, J. F., Van Tassell, C. P., Barendse, W., Eversole, K. A., Gill, C. A., Green, R. D., Hamernik, D. L., Kappes, S. M., Lien, S. & et al. (2009). Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science, 324(5926), 528–532.
  26. Grimberg, J., Nawoscihik, S., Belluscio, L., McKee, R., Turk, A. & Eisenberg, A. (1989). A simple and efficient non-organic procedure for the isolation of genomic DNA from blood. Nucleic Acids Research, 17, 83-90.
  27. Groenen, M. A. M., Archibald, A. L., Uenishi, H., Tuggle, C. K., Takeuchi, Y. & et al. (2012). Analyses of pig genomes provide insight into porcine demography and evolution. Nature, 491, 393-398.
  28. Hawken, R. J., Zhang, Y. D., Fortes, M. R. S., Collis, E., Barris, W. C., Corbet, N. J. & et al. (2012). Genome-wide association studies of female reproduction in tropically adapted beef cattle. Journal of animal science, 90(5), 1398-410.
  29. Hider, J. L., Gittelman, R. M., Shah, T., Edwards, M., Rosenbloom, A., Akey, J. M. & Parra, E. J. (2013). Exploring signatures of positive selection in pigmentation candidate genes in populations of East Asian ancestry. BMC Evolutionary Biology, 13, 150-160.
  30. Höglund, J. K., Guldbrandtsen, B., Lund, M. S. & Sahana, G. (2012). Analyzes of genome-wide association follow-up study for calving traits in dairy cattle. BMC Genetics, 13, 71-77.
  31. Hoglund, J. K., Guldbrandtsen, B., Su, G., Thomsen, B. & Lund, M. S. (2009). Genome scan detects quantitative trait loci affecting female fertility traits in Danish and Swedish Holstein cattle. Journal of Dairy Science, 92(5), 2136-43.
  32. Hrašovec, S., Hauptman, N., Glavač, D., Jelenc, F. & Ravnik-Glavač, M. (2013). TMEM25 is a candidate biomarker methylated and down-regulated in colorectal cancer. Disease markers, 34, 93-104.
  33. Imumorin, I. G., Kim, E. H., Lee, Y. M., De Koning, D. J., van Arendonk, J. A., De Donato, M., Taylor, J. F. & Kim, J. J. (2011). Genome scan for parent-of-origin QTL effects on bovine growth and carcass traits. Frontiers in Genetics, 2, 44-49.
  34. Kijas, J.W., Lenstra, J.A., Hayes, B., Boitard, S., Neto, L.R.P., San Cristobal, M., Servin, B., McCulloch, R., Whan, V., Gietzen, K. & Paiva, S. (2012). Genome-Wide Analysis of the World’s Sheep Breeds Reveals High Levels of Historic Mixture and Strong Recent Selection. PLoS Biology, 10(2), e1001258. doi:10.1371/journal.pbio.1001258.
  35. Kimura, M. (1985). The neutral theory of molecular evolution. Cambridge University Press, New York.
  36. Kuhn, C., Bennewitz, J., Reinsch, N., Xu, N., Thomsen, H., Looft, C., Brockmann, G. A., Schwerin, M., Weimann, C., Hiendleder, S., Erhardt, G. & Medjugo, S. (2003). Quantitative trait loci mapping of functional traits in the German Holstein cattle population. Journal of Dairy Science, 86(1), 360-8.
  37. Leutenegger, A. L., Prum, B., Génin, E., Verny, C., Lemainque, A., Clerget-Darpoux, F. & Thompson, E. A. (2003). Estimation of the inbreeding coefficient through use of genomic data. The American Journal of Human Genetics, 73, 516-523.
  38. Li, C., Sun, D., Zhang, S., Wang, S., Wu, X., Zhang, Q., Liu, L., Li, Y. & Qiao, L. (2014). Genome wide association study identifies 20 novel promising genes associated with milk fatty acid traits in Chinese Holstein. PloS ONE, 9(5), e96186.
  39. Lu, D., Miller, S., Sargolzaei, M., Kelly, M., Vander Voort, G., Caldwell, T., Wang, Z., Plastow, G. & Moore, S. (2013). Genome-wide association analyses for growth and feed efficiency traits in beef cattle. Journal of Animal Science, 91(8), 3612-33.
  40. Malnic, B., Godfrey, P. A. & Buck, L. B. (2004). The human olfactory receptor gene family. PNAS, Proceedings of the National Academy of Sciences, 101(8), 2584-2589 2.
  41. McClure, M. C., Morsci, N. S., Schnabel, R. D., Kim, J. W., Yao, P., Rolf, M. M., McKay, S. D., Gregg, S. J., Chapple, R. H., Northcutt, S. L. & Taylor, J. F. (2010). A genome scans for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. Animal Genetics, 41(6), 597-607.
  42. Mirhabibi, S., Manafiazar, G. H., Qaravisi, S. & Mahmoodi, B. (2007). Inbreeding and its effect on some productive traits in buffaloes of South Iran. Italian Journal of Animal Science, 6, 372-376.
  43. Misra, A. & Tyagi, S. (2010a). In vivo embryo production in buffalo: present and perspectives.  Italian Journal of Animal Science, 6, 74-91.
  44. Moaeen-ud-Din, M. (2014). Buffalo genome research - a review. Animal Science Papers and Reports, 32 (3), 187-199.
  45. Mokhber, M. (2015). A genome-wide scan for Selective signatures in Iranian buffalo breeds. Ph.D. thesis, University of Tehran.
  46. Mokhber, M., Moradi, M., Sadegi, M., Moradi, H. & Williams, J. (2015). Genome-Wide Survey of signature of positive selection in Khuzestani and Mazandrani buffalo breeds. Iranian Journal of Animal Science, 46(2), 119-131.
  47. Moradi, M. H., Nejati-Javaremi, A., Moradi-Shahrbabak, M., Dodds, K. G. & McEwan, J. C. (2012). Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genetics, 13, 10.
  48. Moreno-Estrada, A., Casals, F., Ramı´rez-Soriano, A., Oliva, B., Calafell, F. & et al. (2008). Signatures of Selection in the Human Olfactory Receptor OR5I1 Gene. Molecular Biology and Evolution, 25, 144-154.
  49. Naserian, A. A. & Saremi, B. (2010). Water buffalo industry in Iran. Italian Journal of Animal Science, 6, 1404-5.
  50. Nicolazzi, E. L., Iamartino, D. & Williams, J. L. (2014). AffyPipe: an open-source pipeline for Affymetrix Axiom genotyping workflow. Bioinformatics, 30(21), 3118-3119.
  51. Nielsen, R. & Yang, Z. (1988). Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics, 148, 929-936.
  52. Othman, O. E.  (2006). Restriction fragment length polymorphism and gene mapping of two genes associated with composition in Egyption river buffalo. Journal of Dairy Science, 1(1), 84-92.
  53. Pérez O’Brien, A. M., Utsunomiya, Y. T., Gábor Mészáros, V. B., Bickhart, D. M., Liu, G. E., Van Tassell, C. P., Sonstegard T. S., Silva, M. D., Garcia, J. F. & Sölkner, J. (2014). Assessing signatures of selection through variation in linkage disequilibrium between taurine and indicine cattle. Genetics Selection Evolution, 46, 19-25.
  54. Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., and Reich, D. 2006. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 38, 904-909.
  55. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, P., de Bakker, P .I. W., Daly, M. J. & Sham, P. C. (2007). PLINK: a toolset for whole-genome association and population-based linkage analysis. The American Journal of Human Genetics, 81, 559-575.
  56. Qanbari, S., Pausch, H., Jansen, S., Somel, M., Strom, T.M., Fries, R., Nielsen, R. & Simianer, H. (2014). Classic Selective Sweeps Revealed by Massive Sequencing in Cattle. PLoS Genetics, 10(2), e1004148. doi:10.1371/journal.pgen.1004148
  57. Qanbari, S., Strom, T. M., Haberer, G., Weigend, S., Gheyas, A .A., Turner, F., Burt, D. W., Preisinger, R., Gianola, D. & Simianer, H. (2012) A High Resolution Genome-Wide Scan for Significant Selective Sweeps: An Application to Pooled Sequence Data in Laying Chickens. PLoS ONE, 7(11), e49525. doi:10.1371/journal.pone.0049525.
  58. R version3.0.2 [computer software]. (2013). http:// www.r-project.org/.
  59. Raven, L. A., Cocks, B. G., Goddard, M. E., Pryce, J. E. & Hayes, B. (2014). Genetic variants in mammary development, prolactin signalling and involution pathways explain considerable variation in bovine milk production and milk composition. Genetics Selection Evolution, 46, 29-36.
  60. Rodriguez-Zas, S. L., Southey, B. R., Heyen, D. W. & Lewin, H. A. (2002). Detection of quantitative trait loci influencing dairy traits using a model forlongitudinal data. Journal of Dairy Science, 85(10), 2681-91.
  61. Rubin, C. J., Zody, M. C., Eriksson, J., Meadows, J. R., Sherwood, E., Webster, M. T., Jiang, L., Ingman, M., Sharpe, T., Ka, S. & Hallböök, F. (2010). Whole-genome resequencing reveals loci under selection during chicken domestication. Nature, 464, 587-591.
  62. Sabeti, P. C., Reich, D. E., Higgins, J. M., Levine, H. Z., Richter, D. J., Schaffner, S. F., Gabriel, S.B., Platko, J. V., Patterson, N. J., McDonald, G. J. & Ackerman, H. C. (2002). Detecting recent positive selection in the human genome from Haplotype structure. Nature, 419, 832-837.
  63. Sahana, G., Guldbrandtsen, B. & Lund, M. S. (2011). Genome-wide association study for calving traits in Danish and Swedish Holstein cattle. Journal of Dairy Science, 94, 479-486.
  64. Seidenspinner, T., Bennewitz, J., Reinhardt, F. & Thaller, G. (2009). Need for sharp phenotypes in QTL detection for calving traits in dairy cattle. Journal of Animal Breeding and Genetics, 126(6), 455-62.
  65. Strillacci, M. G., Frigo, E., Canavesi, F., Ungar, Y., Schiavini, F., Zaniboni, L., Reghenzani, L., Cozzi, M. C., Samore, A. B., Kashi, Y., Shimoni, E., Tal-Stein, R., Soller, M., Lipkin, E., & Bagnato, A. (2014a). Quantitative trait loci mapping for conjugated linoleic acid, vaccenic acid and ∆(9)-desaturase in Italian Brown Swiss dairy cattle using selective DNA pooling. Animal Genetics, 45(4), 485-99.
  66. Strillacci, M. G., Frigo, E., Schiavini, F., Samoré, A. B., Canavesi, F., Vevey, M., Cozzi, M. C., Soller, M., Lipkin, E., & Bagnato, A. (2014b). Genome-wide association study for somatic cell score in Valdostana Red Pied cattle breed using pooled DNA. BMC genetics, 15, 106-115.
  67. Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3), 585-595.
  68. Teo, Y. Y., Fry, A. E., Clark, T. G., Tai, E. S. & Seielstad, M. (2007). On the usage of HWE for identifying genotyping errors. Annals of Human Genetics, 71, 701-703.
  69. The Bovine HapMap Consortium, Gibbs, R. A., Taylor, J. F., Van Tassell, C. P., Barendse, W. & et al. (2009) Genome-Wide Survey of SNP Variation Uncovers the Genetic Structure of Cattle Breeds. Science, 324, 528-532.
  70. Utsunomiya, Y. T., O’Brien, A. M. P., Sonstegard, T. S., Van Tassell, C. P., do Carmo, A. S., Mészáros, G., Sölkner, J. & Garcia, J. F. (2013). Detecting Loci under Recent Positive Selection in Dairy and Beef Cattle by Combining Different Genome-Wide Scan Methods. PLoS ONE, 8(5), e64280. doi:10.1371/journal.pone.0064280.
  71. Weir, B. S. & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. International Journal of Evolution, 38, 1358-1370.
  72. Yang, S., Li, X., Li, K., Fan, B. & Tang, Z. (2014). A genome-wide scan for signatures of selection in Chinese indigenous and commercial pig breeds. BMC Genetics, 15(7), 9. From: http://www.biomedcentral.com/1471-2156/15/7.