تأثیر کورکومین بر پروفیل لیپیدهای پلاسما و برخی فراسنجه‌های کیفیت اسپرم خروس‌های مادرگوشتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

2 استاد، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

3 دانشیار، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

4 استادیار بخش پاتولوژی و حیوانات تحت آزمایش، مؤسسه تحقیقات واکسن و سرم سازی رازی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

5 دانشجوی دکتری، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

6 مدیر تولید گروه تولیدی رامسر طیور، تنکابن، ایران

7 دانشیار، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

چکیده

هدف این آزمایش، مطالعه اثر تغذیه کورکومین بر پروفیل لیپیدهای پلاسما و برخی از فراسنجه‌های اسپرم خروس‌های مادرگوشتی بود. آزمایش با 28 قطعه خروس سویه راس 308 از سن 51 هفتگی و به مدت 9 هفته، در قالب یک طرح کاملاً تصادفی با 4 تیمار و 7 تکرار، در قفس‌های انفرادی انجام شد. تیمارهای آزمایشی شامل سطوح مختلف کورکومین بودند (تیمار 1: فاقد کورکومین (شاهد)، تیمار 2: 006/0، تیمار 3: 012/0 و تیمار 4: 018/0 درصد جیره) که به جیره پایه افزوده شد. به‌منظور اندازه‌گیری پروفیل چربی‌های پلاسما، در پایان آزمایش از 5 قطعه خروس در هر گروه تیماری خون­گیری شد. همچنین، طی دوره آزمایش، نمونه‌های منی برای ارزیابی جنبایی و یکپارچگی غشای اسپرم به‌صورت هفتگی جمع‌آوری شد. غلظت گلوکز، تری‌گلیسرید، کلسترول‌ کل و لیپوپروتئین­های با چگالی پایین (LDL) پلاسما در تیمار 3 و 4 به‌طور معنی‌داری نسبت به گروه شاهد کاهش و غلظت لیپوپروتئین­های با چگالی بالا (HDL) افزایش یافت (05/0>P). بین تیمار 2 و گروه شاهد از نظر غلظت گلوکز و فراسنجه‌های چربی پلاسما تفاوت معنی‌داری وجود نداشت. یکپارچگی غشای پلاسمایی و جنبایی اسپرم در تیمارهای آزمایشی نسبت به گروه شاهد به­صورت خطی افزایش یافت (05/0>P). بین تیمارهای آزمایشی، تیمار 4 بیشترین تأثیر بر پروفیل لیپیدهای پلاسما و همچنین بیشترین میزان  بهبود جنبایی و یکپارچگی غشای اسپرم را داشت. در کل، با در نظر گرفتن همه شاخص­های اندازه‌گیری­شده، افزودن 018/0 درصد کورکومین به جیره پاسخ بهتری نسبت به دیگر تیمارها از خود نشان داد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of Curcumin on plasma lipid profile and some sperm quality traits in broiler breeder roosters

نویسندگان [English]

  • Amin Kazemi 1
  • Ahmad Zareh Shahneh 2
  • Saeed Zeinoaldini 3
  • Ali Reza Yousefi 4
  • Mehdi Heidari 5
  • Meysam Tavakoli-Alamooti 6
  • Zarbakhat Ansari 7
1 M.Sc. Student, Department of Animal Science, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
2 Professor, Department of Animal Science, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
3 Associated Professor, Department of Animal Science, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
4 Assistant Professor, Department of Pathology and Experimental Animals, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
5 Ph. D. Candidate, Department of Animal Science, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
6 Production Manager, Ramsar Toyoor Production Group, Tonekabon, Iran
7 Associate Professor, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
چکیده [English]

This study was aimed to determine the effect of dietary Curcumin supplementation on the plasma lipid profile and some sperm quality parameters in broiler breeder roosters. In a completely randomized design, a total of twenty-eight 51-weeks-old Ross-308 roosters were randomly assigned to 4 treatment groups (n=7) and individually caged for 9 successive weeks. Treatments were different levels of Curcumin that were added to a basal diet including: T1, control (no Curcumin supplement), T2, 0.006%; T3, 0.012%, and T4, 0.018% of the diet. To determine plasma lipid profile, blood samples were collected from five birds/treatment at the end of the trial. Also, semen samples were weekly collected from each bird during the experiment, and sperm motility and plasma membrane integrity were evaluated. The results showed that concentrations of the plasma glucose, triglyceride, total cholesterol, and LDL were decreased, and concentrations of HDL were increased in T3 and T4 groups compared to the control group (P < 0.05). There were no significant differences in plasma lipid profile and plasma concentration of glucose between T1 and the control group (P<0.05). Sperm plasma membrane integrity and motility were linearly improved in treated groups compared to the control (P<0.05). The highest decrease in plasma lipid profile and most improvements in sperm motility and plasma membrane integrity was observed in T4 groups compared with other groups. In conclusion, considering all the measured parameters, dietary supplementation of 0.018% Curcumin had the best response on modifying plasma lipid profiles and improving sperm quality characteristics compared with other treatments.

کلیدواژه‌ها [English]

  • Curcumin
  • lipid metabolism
  • plasma
  • reproduction
  • Rooster
  1.  

    1. Agarwal, A., Virk, G., Ong, C., Du, P. & Stefan, S. (2014). Effect of oxidative stress on male reproduction. The World Journal of Mens Health, 32(1), 1-17.
    2. Ahmadi, F. (2010). Effect of turmeric (Curcumin longa) powder on performance, oxidative stress state and some of blood parameters in broiler fed on diets containing aflatoxin B1. Global Veterinaria, 5(6), 312-317.
    3. Akhlaghi, A., Ahangari, Y. J., Zhandi, M. & Peebles, E. D. (2014). Reproductive performance, semen quality, and fatty acid profile of spermatozoa in senescent broiler breeder roosters as enhanced by the long-term feeding of dried apple pomace. Animal Reproduction Science, 147(1), 64–73.
    4. Donoghue, A & Wishart, G. J. (2000). Storage of poultry semen. Animal Reproduction Science, 62(1), 213-232.
    5. Aoun, P., Simpkins, J. W. D. & Agarwal, N. (2003). Role of PPAR-γ ligands in neuroprotection against glutamate-induced cytotoxicity in retinal ganglion cells. Investigative Ophthalmology Visual Science, 44(7), 2999-3004.
    6. Ashraf, M. Z., Hussain, M. E. & Fahim, M. (2005). Antiatherosclerotic effects of dietary supplementations of garlic and turmeric: Restoration of endothelial function in rats. Life Sciences, 77(8), 837-857.
    7. Babu, P. S. & Srinivasan, K. (1997). Hypolipidemic action of curcumin, the active principle of turmeric (Curcuma longa) in streptozotocin induced diabetic rats. Molecular and Cellular Biochemistry, 166(1-2), 169-175.
    8. Barreto, M. S. R., Menten, J. F. M., Racanicci, A. M. C., Pereira, P. W. Z. & Rizzo, P. V. (2008). Plant extracts used as growth promoters in broilers. Revista Brasileira de Ciencia Avlcola, 10(2), 109–115.
    9. Borghei-Rad, S M., Zeinoaldini, S., Zhandi, M., Moravej, H. & Ansari, M. (2017). Feeding rosemary leaves powder ameliorates rooster age-related subfertility. Theriogenology, 101(2017), 35–43.
    10. Burrows, W. H. & Quinn, J. P. (1937). The collection of spermatozoa from the domestic fowl and turkey. Poultry Science.16(1), 19-24.
    11. Daneshyar, M., Ghandkanlo, M., Alizadeh; B, F., Sabzi, F. F. & Aghaei, M. (2011). Effects of dietary turmeric supplementation on plasma lipoproteins, meat quality and fatty acid composition in broilers. South African Journal of Animal Science,41(4), 420-428.
    12. Debski, B., Zalewski, W., Gralak, M. A. & Kosla, T. (2004). Chromium-yeast supplementation of chicken broilers in an industrial farming system. Journal of Trace Elements in Medicine and Biology,18(1), 47-51.
    13. Desvergne, B. & Wahli, W. (1999). Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocrine Reviews, 20(5), 649-688.
    14. Ergun, A., Kose, S. K., Aydos, K., Ata, A. & Avci, A. (2007). Correlation of seminal parameters with serum lipid profile and sex hormones. Archives of andrology,53(1), 21-23.
    15. Ghorbani, Z., Hekmatdoost, A. & Mirmiran, P. (2014). Anti-hyperglycemic and insulin sensitizer effects of turmeric and its principle constituent curcumin. International Journal of Endocrinology and Metabolism,12(4), e18081.
    16. Gobe, G. & Crane, D. (2010). Mitochondria, reactive oxygen species and cadmium toxicity in the kidney. Toxicology letters,19(1), 49-55.
    17. Hamzavi, J. Z., Zolghadri, J. S., Hemayatkhah, V., Kargar J. H. & Erfanian, S. (2014). Protective effect of curcumin agains gamma-radiation on testis of Rats. Bimonthly Journal of Hormozgan University of Medical Sciences,18(2), 121-131. (in Farsi)
    18. Hauner, H. (2002).The mode of action of thiazolidinediones. In Diabetes/Metabolism Research and Reviews, 18(S2).
    19. Jacob, A., Wu, R., Zhou, M. & Wang, P. (2008) Mechanism of the anti-inflammatory effect of curcumin: PPAR-γ activation, PPAR research 2007, Article ID 89369, 5 pages.
    20. Jeyendran, R. S., Ven, H. H., Perez-Pelaez, M., Crabo, B. G. & Zaneveld, L. J. D. (1984). Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics. Journal of Reproduction and Fertility,70(1), 219-228.
    21. Kamal-Eldin, A., Frank, J., Razdan, A., Tengblad, S., Basu, S. & Vessby, B. (2000). Effects of dietary phenolic compounds on tocopherol, cholesterol, and fatty acids in rats. Lipids,35(4), 427-435.
    22. Kelso, K. A., Redpath, A., Noble, R. C. & Speake, B. K. (1997). Lipid and antioxidant changes in spermatozoa and seminal plasma throughout the reproductive period of bulls. Journal of Reproduction and Fertility, 109(1), 1-6.
    23. Kermanshahi, H. & Riasi, A. (2006). Effect of turmeric rhizome powder(Curcuma longa) and soluble NSP degrading enzyme on some blood parameters of laying hens. Poultry science,5(5), 494-498.
    24. Khan, R. U. (2011). Antioxidants and poultry semen quality. Worlds Poultry Science Journal, 67(2), 297-308.
    25. Khan, R. U., Naz, S., Javdani, M., Nikousefat, Z., Selvaggi, M., Tufarelli, V. & Laudadio, V. (2012). The use of Turmeric(Curcuma longa) in poultry feed. Worlds Poultry Science Journal, 68(1), 97-103.
    26. Kosari, A., Hosseinzadeh, A. & Dabidi, R. V. (2012). Effects of endurance training and curcumin supplementation on sperm count and motility and reproductive hormones in rats exposed to lead acetate. In The Iranian Journal of Obstetrics, Gynecology and Infertility,15(11), 22-33. (in Farsi)
    27. Lehrke, M. & Lazar, M. A. (2005). The many faces of PPARγ. Cell, 123(6), 993-999.
    28. Malo, C., Gil, L., Cano, R., Martínez, F. & Gale, I. (2011). Antioxidant effect of rosemary (Rosmarinus officinalis) on boar epididymal spermatozoa during cryopreservation. Theriogenology,75(9), 1735-1741.
    29. Matsubara, Y., Sato, K., Ishii, H. & Akiba, Y. (2005). Changes in mRNA expression of regulatory factors involved in adipocyte differentiation during fatty acid induced adipogenesis in chicken. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 141(1), 108-115.
    30. Monfared, L. (2016). Effects of Mobile Phone Radiation on the Histological and Anatomical Parameters of Testis and Serum Levels of Testosterone in Mice. WWW. Sjimu. Medilam. ac. ir, 24(2), 110-118. (in Farsi)
    31. Robinson, F. E., Wilson, J. L., Yu, M. W., Fasenko, G. M.& Hardin, R. T. (1993). The relationship between body weight and reproductive efficiency in meat-type chickens. Poultry Science, 72(5), 912-922.
    32. Rukkumani, R., Balasubashini, M.& Menon, V. P. (2003). Protective effects of curcumin and photo irradiated curcumin on circulatory lipids and lipid peroxidation products in alcohol and polyunsaturated fatty acid‐induced toxicity. Phytotherapy Research, 17(8), 925-929.
    33. Saemi, F., Zamiri, M. J., Akhlaghi, A., Niakousari, M., Dadpasand, M.& Ommati, M. M. (2012). Dietary inclusion of dried tomato pomace improves the seminal characteristics in Iranian native roosters. Poultry Science, 91(9), 2310-2315.
    34. Santiago-Moreno, J., Castano, C., Coloma, M. A., Gómez-Brunet, A., Toledano-Díaz, A., Lopez-Sebastián, A.& Campo, J. L. (2009). Use of the hypo-osmotic swelling test and aniline blue staining to improve the evaluation of seasonal sperm variation in native Spanish free-range poultry. Poultry Science, 88(12), 2661-2669.
    35. Saraswati, T. R., Manalu, W.& Ekastuti, K. N. (2013). The role of turmeric powder in lipid metabolism and its effect on quality of the first quail’s egg. Journal of the Indonesian Tropical Animal Agriculture, 38(2), 123-130.
    36. Schisterman, E. F., Mumford, S. L., Chen, Z., Browne, R. W., Boyd B. D., Kim, S. & Buck L.G. M. (2014). Lipid concentrations and semen quality: the LIFE study. Andrology, 2(3), 408-415.
    37. Soni, K. B.& Kuttan, R. (1992). Effect of oral curcumin administration on serum peroxides and cholesterol levels in human volunteers. Indian Journal of Physiology and Pharmacology, 36(4), 273- 275.
    38. Speake, B K., Surai, P. F., Rooke, J. A., Vriese, S. D. & Christophe, A. (2003). Regulation of avian and mammalian sperm production by dietary fatty acids. Male Fertility and Lipid Metabolism. AOCS Press, Champaign, IL, 96-117.
    39. Sukandar, E. Y., Permana, H., Adnyana, I. K., Sigit, J. I., Ilyas, R. A., Hasimun, P.& Mardiyah, D. (2010). Clinical study of turmeric(Curcuma longa L.) and garlic (Allium sativum L.) extracts as antihyperglycemic and antihyperlipidemic agent in type-2 diabetes-dyslipidemia patients. IJP-International Journal of Pharmacology, 6(4), 456-463.
    40. Suryanarayana, P., Krishnaswamy, K.& Reddy, G. B. (2003). Effect of curcumin on galactose-induced cataractogenesis in rats. Molecular Vision, 9, 223-30. 24.
    41. Swarbrick, M. M., Chapman, C. M., McQuillan, B. M., Hung, J., Thompson, P. L.& Beilby, J. P. (2001). A Pro12Ala polymorphism in the human peroxisome proliferator-activated receptor-gamma 2 is associated with combined hyperlipidaemia in obesity. European Journal of Endocrinology, 144(3), 277-282.
    42. Um, M. Y., Hwang, K. H., Ahn, J. & Ha, T. Y. (2013). Curcumin Attenuates Diet‐Induced Hepatic Steatosis by Activating AMP Activated Protein Kinase. Basic and Clinical Pharmacology and Toxicology, 113(3), 152-157.
    43. Verma, A.& Kanwar, K. C. (1999). Effect of vitamin E on human sperm motility and lipid peroxidation in vitro. Asian Journal of Andrology, 1(3), 151-154.
    44. Walzem, R. L.& Chen, S. (2014). Obesity-induced dysfunctions in female reproduction: lessons from birds and mammals. Advances in Nutrition: An International Review Journal, 5(2), 199–206.
    45. Weisberg, S. P., Leibel, R.& Tortoriello, D. V. (2008). Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity. Endocrinology, 149(7), 3549-3558.
    46. Yki-Jarvinen, H. (2004). Thiazolidinediones. New England Journal of Medicine, 351(11), 1106–1118.
    47. Zegura, B., Dobnik, D., Niderl, M. H. & Filipic, M. (2011). Antioxidant and antigenotoxic effects of rosemary (Rosmarinus officinalis L.) extracts in Salmonella typhimurium TA98 and HepG2 cells. Environmental Toxicology and Pharmacology, 32(2), 296-305.
    48. Zeinali, A., Kermanshahi, H., Riasi, A., Farhangfar, H., Sarir, H.& Ziaie, H. (2011). Effects of sodium selenite and turmeric powder on thyroid hormones and plasma lipids of broiler chickens reared under heat stress condition. Global Veterineria, 6(3), 237-240.
    49. Zhang, J., Hu, Z., Lu, C., Bai, K., Zhang, L.& Wang, Tian. (2015). Effect of various levels of dietary curcumin on meat quality and antioxidant profile of breast muscle in broilers. Journal of Agricultural and Food Chemistry, 63(15), 3880-3886.