بررسی همبستگی بین تولید و ترکیب شیر و ارزش اصلاحی آن ها با میزان متان پیش بینی شده از طریق اسیدهای چرب فرار در گاوهای هلشتاین ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

2 استاد، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

3 استادیار، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

4 دانشیار، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

5 استادیار، گروه علوم دامی، دانشکده علوم کشاورزی و زیستی، دانشگاه ایالتی آیووا آمریکا

چکیده

در سیستم تولیدی نشخوارکنندگان، هر حیوان روزانه 500-250 لیتر متان تولید می­کند به‌طوری‌که تخمین زده شده است میزان مشارکت نشخوراکنندگان در گرمای جهان معادل با 10-8 درصد در طول 100-50 سال آینده می­باشد. هدف از این تحقیق بررسی مقدار همبستگی میزان متان (پیش­بینی­شده از طریق اسیدهای چرب فرار) با صفات تولید شیر، اجزای متشکل آن و ارزش­های اصلاحی این صفات در گاوهای هلشتاین ایران می­باشد. در این راستا مایع شکمبه از دو زیر جمعیت 75 راسی به روش لوله مری جمع­آوری گردید (زیر جمعیت­ها از نظر ارزش اصلاحی تولید شیر با یکدیگر متفاوت بودند). آنالیز داده­ها در محیط R.3.3.0 انجام شد. نتایج حاصل از این آزمایش نشان داد که مقدار متان پیش­بینی­شده به‌ازای یک واحد شیر و چربی در دو زیر جمعیت تفاوت بسیار معنی‌داری با یکدیگر دارند (0001/0P <). همچنین در این پژوهش مشخص گردید که ارزش اصلاحی صفات مرتبط با تولید و ترکیب شیر با میزان متان تولید شده به‌ازای یک واحد محصول دارای همبستگی منفی ضعیف تا متوسط می­باشند (05/0P <). بیشترین مقدار همبستگی میان تولید روزانه چربی با میزان متان تولیدی به‌ازای یک کیلوگرم چربی (79/0-) و تولید روزانه شیر با میزان متان تولیدی به‌ازای یک گیلوگرم شیر (62/0-) بود. این نتایج نشان می­دهد که احتمالا میزان متان تولیدی را می­توان به‌طور غیر مستقیم و از طریق صفات که دارای همبستگی بالا با این انتشار متان هستند (مانند تولید روزانه چربی یا شیر) در هر نسل کاهش داد.

کلیدواژه‌ها


عنوان مقاله [English]

Study of the correlation among milk production traits, its components and the breeding value of these traits with predicted methane using volatile fatty acids in Iranian Holstein cattle

نویسندگان [English]

  • Ali Jalil Sarghale 1
  • Mohammad Moradi Shahre Babak 2
  • Hossein Moradi Shahrbabak 3
  • Ardeshir Nejati Javaremi 4
  • Mahdi Saatchi 5
1 Ph.D. Candidate, Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Iran
2 Professor, Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
3 Assistant Professor, Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
4 Associate Professor, Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
5 Assistant Professor, Department of Animal Science, College of Agriculture and Life Sciences, Iowa State University, USA
چکیده [English]

The methane production from ruminant production system was estimated to reach 250-500 L per animal per day which has been reported to contribute up to 8-10 % of global warming during the next 50-100 years. The aim of this study was to investigate the correlation among methane emission (predicted by volatile fatty acids) with milk production traits, its components and breeding values (BV) of these traits in Iranian Holstein cattle. The rumen digesta was obtained from 150 cattle through stomach tubing and this population divided into 2 groups with 75 cattle in each (the groups have different milk production BV). Data were analyzed by R.3.3.0. The results showed that methane emission per unit of milk and fat were different in the two groups (P<0.0001). Also, the BVs of milk production, fat and protein traits and daily production of milk, fat and protein had weak to moderate negative correlation with methane emission per unit(P<0.05). The highest correlation was observed between daily production of fat with methane emission per unit of fat (-0.79) as well as daily milk production with methane emission per unit of milk (-0.62). These results showed that methane emission may be reduced by indirect selection per generation for the traits had a high correlation with the gas (daily production of milk and fat).

کلیدواژه‌ها [English]

  • Breeding value
  • Correlation
  • Iranian Holstein cattle
  • methane
  • production and component of milk
  1. Asanuma, N. & Iwamoto, M. (1999). The production of formate, a substrate for methanogenesis, from compounds related with the glyoxylate cycle by mixed ruminal microbes. Nihon Chikusan Gakkaiho, 70, 67-73.
  2. Asanuma, N., Iwamoto, M. & Hino, T. (1999). Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. Journal of Dairy Science, 82, 780-787.
  3. Boujenane, I. (2002). Estimates of genetic and phenotypic parameters for milk production in moroccan Holstein-Friesian cows. Revue d'élevage et de médecine vétérinaire des pays tropicaux, 55, 63-67.
  4. Capper, J. L., Cady, R. & Bauman, D. (2009). The environmental impact of dairy production: 1944 compared with 2007. Journal of Animal Science, 87, 2160-2167.
  5. Chauhan, V. & Hayes, J. (1991). Genetic parameters for first lactation milk production and composition traits for Holsteins using multivariate restricted maximum likelihood. Journal of Dairy Science, 74, 603-610.
  6. Cue, R., Monardes, H. & Hayes, J. (1987). Correlations between production traits in first lactation Holstein cows. Journal of Dairy Science, 70, 2132-2137.
  7. De Haas, Y., Windig, J., Calus, M., Dijkstra, J., De Haan, M., Bannink, A. & Veerkamp, R. (2011). Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection. Journal of Dairy Science, 94, 6122-6134.
  8. Ellis, J., Kebreab, E., Odongo, N., McBride, B., Okine, E. & France, J. (2007). Prediction of methane production from dairy and beef cattle. Journal of Dairy Science, 90, 3456-3466.
  9. Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D.C. & Myhre, G. (2007). Changes in atmospheric constituents and in radiative forcing. Chapter 2, Climate Change 2007. The Physical Science Basis.
  10. Hayes, B.J., Lewin, H.A. & Goddard, M.E. (2013). The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends in Genetics, 29, 206-214.
  11. Herd, R., Bird, S., Donoghue, K., Arthur, P. & Hegarty, R. (2013). Phenotypic associations between methane production traits, volatile fatty acids and animal breeding traits, Proceedings of the Association for the Advancement of Animal Breeding and Genetics, pp. 286-289.
  12. Hogan, K. (1993) Opportunities to reduce anthropogenic methane emissions in the United States. US Environmental Protection Agency, Washington, DC, EPA.
  13. Hünerberg, M., McGinn, S., Beauchemin, K., Entz, T., Okine, E., Harstad, O. & McAllister, T. (2015). Impact of ruminal pH on enteric methane emissions. Journal of Animal Science, 93, 1760-1766.
  14. Johnson, D.E. & Ward, G.M. (1996). Estimates of animal methane emissions. Environmental monitoring and assessment, 42, 133-141.
  15. Kandel, P. B., Gengler, N. & Soyeurt, H. (2015). Assessing variability of literature based methane indicator traits in a large dairy cow population. Biotechnologie, Agronomie, Société et Environnement, 19, 11-19.
  16. Kandel, P.B., Vanderick, S., Vanrobays, M.L., Vanlierde, A., Dehareng, F., Froidmont, E., Soyeurt, H. & Gengler, N. (2014). Consequences of selection for environmental impact traits in dairy cows. In: Proceedings of 10th World Congress of Genetics Applied to Livestock Productio. Vancouver, Canada.
  17. Kandel, P.B., Vanrobays, M.L., Vanlierde, A., Dehareng, F., Froidmont, E., Dardenne, P., Lewis, E., Buckley, F., Deighton, M. & McParland, S. (2013). Genetic parameters for methane emissions predicted from milk mid-infrared spectra in dairy cows. Journal of Dairy Science, 95, 388.
  18. Knapp, J., Laur, G., Vadas, P., Weiss, W. & Tricarico, J. (2014). Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. Journal of Dairy Science, 97, 3231-3261.
  19. Murray, R., Bryant, A. & Leng, R. (1976). Rates of production of methane in the rumen and large intestine of sheep. British Journal of Nutrition, 36, 1-14.
  20. Ottenstein, D. & Bartley, D. (1971). Improved gas chromatography separation of free acids C2-C5 in dilute solution. Analytical Chemistry, 43, 952-955.
  21. Palut, M.P.J. & Canziani, O.F. (2007). Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press.
  22. Ramin, M., Lerose, D., Tagliapietra, F. & Huhtanen, P. (2015). Comparison of rumen fluid inoculum vs. faecal inoculum on predicted methane production using a fully automated in vitro gas production system. Livestock Science, 181, 65-71.
  23. Ren, N., Liu, M., Wang, A., Ding, J. & Li, H. (2003). Organic acids conversion in methanogenic-phase reactor of the two-phase anaerobic process. Huan jing ke xue= Huanjing kexue/[bian ji, Zhongguo ke xue yuan huan jing ke xue wei yuan hui" Huan jing ke xue" bian ji wei yuan hui.], 24, 89-93.
  24. Ren  N., Wang, A. & Ma, F. (2005). Acid-producing fermentative microbe physiological ecology. Science Press, Beijing.
  25. Seyeddokht, A., Aslaminejad, A., Tahmoorespur, M., Naeeimipour, H., Mahdavi, M. & Zabetiyan, H. M. (2012). Estimation of genetic trend for 305-day milk yield using random regression test day model in Iranian Holstein cattle. Animal Production Research, 1, 9-18. (in Farsi)
  26. Shafer, S.R., Walthall, C.L., Franzluebbers, A.J., Scholten, M., Meijs, J., Clark, H., Reisinger, A., Yagi, K., Roel, A. & Slattery, B. (2011). Emergence of the global research alliance on agricultural greenhouse gases. Carbon Management, 2, 209-214.
  27. Shook, G. (2006). Major advances in determining appropriate selection goals. Journal of dairy science, 89, 1349-1361.
  28. Sneddon, N., Lopez-Villalobos, N., Davis, S., Hickson, R. & Shalloo, L. (2015). Genetic parameters for milk components including lactose from test day records in the New Zealand dairy herd. New Zealand Journal of Agricultural Research, 58, 97-107.
  29. VanRaden, P. (2004). Invited review: Selection on net merit to improve lifetime profit. Journal of dairy science, 87, 3125-3131.
  30. Welper, R. & Freeman, A. (1992). Genetic Parameters for Yield Traits of Holsteins, Including Lactose and Somatic Cell Score1. Journal of Dairy Science, 75, 1342-1348.
  31. Wolin, M. J. (1960). A theoretical rumen fermentation balance. Journal of Dairy Science, 43, 1452-1459.