تأثیر مکمل آلی عنصر روی بر عملکرد، پاسخ ایمنی، جمعیت میکروبی سکوم و قابلیت هضم مواد مغذی در جوجه های گوشتی پرورش یافته تحت تنش تراکم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد، گروه علوم دامی، دانشکده علوم دامی و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان

2 دانشیار، گروه علوم دامی، دانشکده علوم دامی و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان

3 استادیار، گروه علوم دامی، دانشکده علوم دامی و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان

چکیده

به­منظور بررسی مکمل آلی عنصر روی­ در تغذیه جوجه­های گوشتی پرورش یافته در شرایط متفاوت تراکم، آزمایشی با استفاده از دو سطح تراکم (10 و16 قطعه پرنده در هر مترمربع) و 4 سطح عنصر روی (40، 80، 120 و 160 میلی­گرم در کیلوگرم) در قالب طرح کاملا تصادفی به روش فاکتوریل 2×4 انجام گردید. نتایج در 1 تا 21 روزگی نشان داد ، پرندگان پرورش یافته در تراکم بالا کمترین میزان خوراک مصرفی و ضریب تبدیل خوراک را نسبت به تراکم نرمال و د­­­­ر 22 تا 42 روزگی پرندگان پرورش یافته در تراکم نرمال کمترین خوراک مصرفی و ضریب تبدیل خوراک را داشتند (05/0>P). با افزایش سطح عنصر روی در جیره، جمعیت باکتری­های کلی­فرم سکوم جوجه‌ها در شرایط تراکم نرمال و بالا کاهش نشان داد (05/0>P). قابلیت هضم ایلئومی پروتئین با افزایش سطح عنصر روی در جیره در شرایط تراکم نرمال و بالا افزایش یافته است (05/0>P).یافته­های پژوهش حاضر نشان داد که افزودن عنصر روی در شرایط پرورش متراکم نتوانست فراسنجه‌های عملکردی را تحت تأثیر قرار دهد، اگرچه با افزایش سطح عنصر روی در جیره، قابلیت هضم ایلئومی پروتئین خام و ماده آلی افزایش و جمعیت میکروبی کلی فرم و ای‌کولای در سکوم جوجه‌های گوشتی کاهش یافت.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of organic zinc supplement on performance, immunity responses, cecal microbial population and digestibility of nutrients in broiler chickens reared at high stocking density

نویسندگان [English]

  • Vrya Rasooli 1
  • Somayyeh Salari 2
  • Ahmad Tatar 3
1 Former M. Sc. Student, Department of Animal Science, Faculty of Animal Science and Food Industry, Agricultural Sciences and Natural Resources University of Khuzestan, Iran
2 Associate Professor, Department of Animal Science, Faculty of Animal Science and Food Industry, Agricultural Sciences and Natural Resources University of Khuzestan, Iran
3 Assistant Professor, Department of Animal Science, Faculty of Animal Science and Food Industry, Agricultural Sciences and Natural Resources University of Khuzestan, Iran
چکیده [English]

In order to investigate the effect of organic zinc (Zn) supplement in broiler chicken nutrition that reared at high stock density, this experiment was done by using 2 levels of density (10 and 16 birds/m2) and 4 levels of Zn (40, 80, 120 and 160 ppm) in a completely randomized design with 4×2 factorial arrangement. The results showed that birds with higher stocking density had lower feed intake (FI) and feed conversion ratio (FCR) compared to those in normal density from d 1-21 and birds with normal stocking density had lowest FI and FCR from d 22-42 (P<0.05). Cecal population of Coliform decreased in normal and high stock density by increasing Zn level in the diet (P<0.05). Apparent ileal digestibility of crude protein significantly increased by increasing the levels of Zn in the diet in normal and high stock density (P<0.05). These data suggest that dietary supplementation of Zn significantly increased ileal digestibility of crude protein and organic matter and also, decreased cecal population of Coliform and E. coli in high and normal stocking density without affecting the performance of broilers. 

کلیدواژه‌ها [English]

  • Broiler Chicken
  • cecal bacteria
  • high stock density
  • ileal digestibility
  • weight gain
  1. Akhlaghi, A., Zamiri, M. J., Zare Shahneh, A., Jafari Ahangari, Y., Nejati Javaremi, A., Rahimi Mianji, G., ... & Atashi, H. (2012). Maternal hyperthyroidism is associated with a decreased incidence of cold-induced ascites in broiler chickens. Poultry Science, 91(5), 1165-1172.
  2. Al- Homidan, A. A. (2001). The effect of temperature and stocking density on broiler performance and ammonia production. Poultry Science, 21(5), 1121- 1137.
  3. Bartlett, J. R. & Smith, M. O. (2003). Effects of different levels of zinc on the performance and immunocompetence of broilers under heat stress. Poultry Science, 82(10), 1580-1588.
  4. Blokhutis H. J. & Vander Haar J. W. (1990). The effect of the stocking density on the behavior broilers. Arohiv fur Geflugelkunde, 54, 74-77.
  5. Buckland, R. B., Gaperdone, H. C. & Bragg, D. B. (1971). Interaction of strain, density and ration with two light systems and broiler performance. Canadian Journal of Animal Science, 51(2), 615-619.
  6. Buijs, S., Keeling, L., Rettenbacher, S., Van Poucke, E. & Tuyttens, F. A. M. (2009). Stocking density effects on broiler welfare: Identifying sensitive ranges for different indicators. Poultry Science, 88(8), 1536-1543.
  7. Butler, E. J. & Curtis, M. J. (1973). The effects of Escherichia coli endotoxin and ACTH on the plasma zinc concentration in the domestic fowl. Research in Veterinary Science, 15(3), 363-367.
  8. Cousins, R. J. & Hempe, J. M. (1990). Zinc in Nutrition International life Sciences institute Nutrition Foundation. Washington. D.C, 251-260.
  9. Dibner, J. J., Trehy, M., Schasteen, C. S. & Hume, J. A. (2004). Use of 2-hydroxy-4 (methylthio) butanoic acid (HMTBA) as a ligand for organic trace minerals. Poultry Science, 83(2), 832-838.
  10. Dieck, H. T., Doring, F., Roth, H. P. & Daniel, H.(2003).Changes in rat hepatic gene expression in response to zinc deficiency as assessed by DNA arrays. Journal Nutrition, 133(4), 1004-1010.
  11. Dozier, W. A., Thaxton, J. P., Purswell, J. L., Olanrewaju, H. A., Branton, S. L. & Roush, W. B. (2006). Stocking density effects on male broilers grown to 1.8 kilograms of body weight. Poultry Science, 85(3), 344-351.
  12. Dunham, H. J. (1993). Lactobacillus reuteri immunomodulation of stressor-associated diseases in newly hatched chickens and turkeys. Poultry Science, 72 Abstract.
  13. Ekstrand, C. (1993). Effects of stocking density on the health, behaviour and productivity of broilers. A literature review. Rapport-Sveriges Lantbruksuniversitet, Veterinaermedicinska Fakulteten, Institutionen foer Husdjurshygien (Sweden), 4(12), 107-116.
  14. Houshmand, M., Azhar, K., Zulkifli, I., Bejo, M. H. & Kamyab, A. (2012). Effects of prebiotic, protein level, and stocking density on performance, immunity, and stress indicators of broilers. Poultry Science, 91(1), 393-401.
  15. Jahanian, R. (2010). Effect of organic and inorganic sources of zinc element on the function and metabolism of this element in broiler chickens fed with corn-soybean meal. Fourth Iranian Congress of Animal Sciences, 1028-1024.
  16. Feddes, J. J. R., Emmanuel, E. J. & Zuidhof, M. J. (2002). Broiler performance, bodyweight variance, feed and water intake, and carcass quality at different stocking densities. Poultry Science, 81(11), 774-779.
  17. Fletcher, M. P., Gershwin, M. E., Keen, C. L. & Hurley, L. S. (1988). Trace element deficiencies and immune responsiveness in human and animal models. In: Nutrition and Immunology. New York NY. pp: 215-239.
  18. Grasman, K. A. (2010). In vivo functional tests for assessing immunotoxicity in birds. Immunotoxicity Testing: Methods and Protocols, 63(6), 387-398.‏
  19. Gropper, S. S. & Smith, J. L. (2012). Advanced Nutrition and human metabolism. Cengage Learning, 15(1), 600.
  20. Guardia, S., Konsak, B., Combes, S., Levenez, F., Cauquil, L., Guillot, J. F. & Gabriel, I. (2011). Effects of stocking density on the growth performance and digestive microbiota of broiler chickens. Poultry Science, 90 (9), 1878-1889.‏
  21. Heckert, R. A., Estevez, I., Russek-Cohen, E. & Pettit-Riley, R. (2002). Effects of density and perch availability on the immune status of broilers. Poultry Science, 81(4), 451-457.
  22. Hoffmann, J. A., Kafatos, F. C., Janeway, C. A. & Ezekowitz, R. A. B. (1999). Phylogenetic perspectives in innate immunity. Poultry Science, 284(5418), 1313-1318.
  23. Hu, C. H., Qian, Z. C., Song, J., Luan, Z. S. & Zuo, A. Y. (2013). Effects of zinc oxide-montmorillonite hybrid on growth performance, intestinal structure, and function of broiler chicken. Poultry Science, 92(1), 143-150.
  24. Katouli, M., Melin, L., Jensen‐Waern, M., Wallgren, P. & Möllby, R. (1999). The effect of zinc oxide supplementation on the stability of the intestinal flora with special reference to composition of coliforms in weaned pigs. Journal of Applied Microbiology, 87(4), 564-573.
  25. Kaya, S., Umucalilar, H. D., Haliloglu, S. & Ipek, H. (2001). Effect of dietary vitamin A and zinc on egg yield and some blood parameters of laying hens. Turkish Journal of Veterinary and Animal Sciences, 25(5), 763-769.
  26. Kim, W.K., Donalson, L.M., Herrara, P., Woodward, C.L., Kubena, L.F., Nisbet, D.J. & Ricke, S.C. (2004). Effect of different Bone preparation method (Fresh, Dry, and Fat-free dry) on bone parameters and the correlation between bone prameters. Poultry Science, 83(10), 1663-1666.
  27. Lopez, G. & Lesson, S. (1995). Response of broiler breeders to low-protein diets. Part 1. Adult breeder performance. Poultry Science, 74(12), 685-695.
  28. Prasad, A. S. & Kucuk, O. (2002). Zinc in cancer prevention. Cancer and Metastasis Reviews, 21(3-4), 291-295.
  29. Reiter, K. & Bessei, W. (2000). Effect of stocking density of broilers on temperature in the litter and at bird level. Archive Ge Flugelk, 64(12), 204-206.
  30. Sahin, K. & kucuk, O. (2003). Zinc supplementation alleviates heat stress in laying Japanese broiler chiken. The American Society for Nutritional Sciences, 133 (6), 2808-2811.
  31. Sandoval, M., Henry, P. R., Luo, X. G., Littell, R. C., Miles, R. D. & Ammerman, C. B. (1998). Performance and tissue zinc and metallothionein accumulation in chicks fed a high dietary level of zinc. Poultry Science, 77(9), 1354-1363.
  32. Scheideler, S. E. (1993). Effects of various types of aluminosilicates and aflatoxin B1 on aflatoxin toxicity, chick performance, and mineral status. Poultry Science, 72(2), 282-288.‏
  33. Scholtyssek, S. & Gschwindt-Ensinger, B. (1983). Leistungsvermgen einschlie lich befiederung und belastbarkeit von broilern bei unterschiedlicher besatzdichte in bodenhaltung. Arch Geflügelk, 47(6), 3-8.
  34. Song, J., Xiao, K., Ke, Y. L., Jiao, L. F., Hu, C. H., Diao, Q. Y. & Zou, X. T. 2014. Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress. Poultry Science, 93(3), 581-588.
  35. Stadecker, M. J., Lukic, M., Dvorak, A. & Leskowitz, S. (1977). The cutaneous basophil response to phytohemagglutinin in chickens. The Journal of Immunology, 118(5), 1564-1568.
  36. Thaxton, S. L, Dozier, W. A, Branton, J. P., Morgan, G. W, Miles, D. M, Roush, W. B, Lott, B. D & Vizzier Thaxton, Y. (2006). Stocking density and physiological adaptive responses of broilers. Poultry Science, 85(12), 819-824.
  37. Tufft, L. S., Nockels, C. F. & Fettman, M. J. (1988). Effects of Escherichia coli on iron, copper, and zinc metabolism in chicks. Avian Diseases, 32(4), 779-786.
  38. Vanhonacker, F., Verbeke, W., Van, Poucke, E., Buijs, S. & Tuyttens, F. A. M. (2008). Societal concern related to stocking density, pen size in farma animal production. Livestock Science, 123, (1) 16-22.
  39. Walsh, C. T., Sandstead, H. H., Prasad, A. S., Newberne, P. M. & Fraker, P. J. (1990). Zinc: health effects and research priorities for the 1990s. Environmental Health Perspectives, 102(2), 5-46.
  40. Wedekind, K. J., A. E. Hortin & D. H. Baker. 1992. Methodology for assessing zinc bioavailability: Efficacy estimates for zinc-methionine, zinc sulfate, and zinc oxide. Journal of Animal Science, 70(16), 178-187.
  41. Zhang, B. & Coon, C. N. (1997). The relationship of various tiba bone measurements in Hens. Poultry Science, 76(12), 1698-1701.
  42. Zhang, H. Y., Piao, X. S., Zhang, Q., Li, P., Yi, J. Q., Liu, J. D., Li, Q. Y. & Wang, G. Q. (2013). The effects of Forsythia suspensa extract and berberine on growth performance, immunity, antioxidant activities, and intestinal microbiota in broilers under high stocking density. Poultry Science, 92(8), 1981-1988.
  43. Zhu, Y. W., Li, W. X., Lu, L., Zhang, L. Y., Ji, C., Lin, X. & Luo, X. G. (2017). Impact of maternal heat stress in conjunction with dietary zinc supplementation on hatchability, embryonic development, and growth performance in offspring broilers. Poultry Science, 84(8), 368-376.