8954856055505db

اثر چرخه تخمدانی بر بیان گیرنده‌های زنگوله‌ای شکل TLR4 در آمپولا و ایستموس اویداکت گاوهای شیری هلشتاین

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، گروه علوم دامی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

2 دانشجوی دکتری، گروه علوم دامی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

چکیده

هدف از مطالعه حاضر، بررسی الگوی بیان ژن TLR4 در آمپولا و ایستموس اویداکت گاو در مراحل مختلف چرخه تخمدانی (پیش از تخمک­ریزی، پس از تخمک­ریزی و میانه چرخه) بود. مرحله چرخه تخمدانی با توجه به ظاهر، اندازه و رنگ جسم زرد و فولیکول چیره مشخص شد. بیان ژن TLR4 در ایستموس و آمپولای 40 اویداکت به­روش qRT-PCR اندازه­گیری شد. نتایج نشان داد، که در اویداکت­های واقع در سمت تخمدان فعال (دارای فولیکول غالب یا جسم زرد)، میزان بیان ژن TLR4 در ایستموس به­طور معنی­داری بیش­تر از آمپولا بود. همچنین، پیش از تخمک­ریزی، بیان ژن TLR4 در آمپولا و ایستموس اویداکت­های واقع در سمت تخمدان فعال به‌صورت معنی­داری از دیگر مراحل چرخه تخمدانی و همچنین از آمپولا و ایستموس اویداکت­های مربوط به تخمدان غیرفعال (فاقد فولیکول غالب یا جسم زرد) بیشتر بود. به­طورکلی نتایج این مطالعه نشان داد که بیان ژن TLR4 در اویداکت گاو تحت تأثیر وضعیت هورمونی (چرخه ­تخمدانی)، موقعیت قرارگیری آن نسبت به تخمدان فعال و ناحیه اویداکتی (آمپولا یا ایستموس) قرار دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of ovarian cycle on TLR4 mRNA expression pattern in ampulla and isthmus of the bovine oviduct

نویسندگان [English]

  • Rasoul Kowsar 1
  • Morteza Zahrazadeh 2
  • Ali Sadeghi Sefidmazgi 1
1 Assistant Professor, Department of Animal Sciences, Faculty of Agriculture, Isfahan University of Technology, PO BOX: 84156/83111, Isfahan, Iran
2 Ph. D. Candidate, Department of Animal Sciences, Faculty of Agriculture, Isfahan University of Technology, PO BOX: 84156/83111, Isfahan, Iran
چکیده [English]

This study was conducted to evaluate the TLR4 gene expression's pattern in ampulla and isthmus of dairy cows during the ovarian cycle. The ovarian cycle phase was determined based on the appearance, size, and color of corpus luteum and dominant follicle. The TLR4 expression was assessed in ampulla and isthmus of 40 oviducts using qRT-PCR. Results showed at the pre-ovulatory phase, TLR4 gene expression in the isthmus of ipsilateral oviducts was significantly greater than that in ampulla. Also, the expression of TLR4 in ampulla and isthmus of the oviducts ipsilateral to the pre-ovulatory ovary was significantly greater than that in the ampulla and isthmus of oviducts contralateral to the post-ovulatory or mid-cycle ovaries. In general, the present study showed that, TLR4 mRNA expression was differentially influenced by the stage of the ovarian cycle, its relation to the functional ovary, and the oviductal parts (ampulla or isthmus) in bovine.

کلیدواژه‌ها [English]

  • Dairy cow
  • estrous cycle
  • innate immunity
  • oviduct
  • TLR4
  1. Ault, K. A., Tawfik, O. W., Smith-King, M. M., Gunter, J. & Terranova, P. F. (1996). Tumor necrosis factor-alpha response to infection with Chlamydia Trachomatis in human fallopian tube organ culture. American Journal of Obstetrics and Gynecology, 175, 124-131.
  2. Azawi, O. I. (2008). Postpartum uterine infection in cattle. Animal Reproduction Science, 105, 187-208.
  3. Biragyn, A., Ruffini, P. A., Leifer, C. A., Klyushnenkova, E., Shakhov, A., Chertov, O., Shirakawa, A. K., Farber, J. M., Segal, D. M. & Oppenheim, J. J. (2002). Toll-like receptor 4-dependent activation of dendritic cells by β-defensin 2. Science, 298, 1025-1029.
  4. Bulek, K., Swaidani, S., Aronica, M. & Li, X. (2010). Epithelium: the interplay between innate and Th2 immunity. Immunology & Cell Biology, 88, 257-268.
  5. Chen, C., Zibiao, H., Ming, Z., Shiyi, C., Ruixia, L., Jie, W. & SongJia. L. (2014). Expression pattern of Toll-like receptors (TLRs) in different organs and effects of lipopolysaccharide on the expression of TLR 2 and 4 in reproductive organs of female rabbit. Developmental & Comparative Immunology, 46, 341-348.
  6. Chomczynski, P. & Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry, 162, 156-159.
  7. Coy, P., Garcia-Vazquez, F. A., Visconti, P. E. & Aviles, M. (2012). Roles of the oviduct in mammalian fertilization. Reproduction, 144, 649-660.
  8. Fabregat, A., Sidiropoulos, K., Viteri, G., Forner, O., Marin-Garcia, P., Arnau, V., et al. (2017). Reactome pathway analysis: a high-performance in-memory approach. BMC Bioinformatics, 18, 142.
  9. Havlicek, V., Lopatarova, M., Cech, S., Dolezel, R., Huber, T., Pavlok, A., Brem, G. & Besenfelder, U. (2005). In vivo culture of bovine embryos and quality assessment of in vivo vs. in vitro produced embryos. Vetrinary Medicine-Czech, 50, 149-157.
  10. Henricks, D., Dickey, J. & Niswender, G. (1970). Serum luteinizing hormone and plasma progesterone levels during the estrous cycle and early pregnancy in cows. Biology of Reproduction, 2, 346-351.
  11. Hornung, V., Rothenfusser, S., Britsch, S., Krug, A., Jahrsdörfer, B., Giese, T., Endres, S. & Hartmann, G. (2002). Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. The Journal of Immunology, 168, 4531-4537.
  12. Hvid, M., Baczynska, A., Deleuran, B., Fedder, J., Knudsen, H. J., Christiansen, G. & Birkelund, S. (2007). Interleukin-1 is the initiator of Fallopian tube destruction during Chlamydia trachomatis infection. Cellular Microbiology, 9, 2795-2803.
  13. Ibrahim, S., Salilew-Wondim, D., Rings, F., Hoelker, M., Neuhoff, C., Tholen, E., Looft, C., Schellander, K. & Tesfaye, D. (2015). Expression pattern of inflammatory response genes and their regulatory micrornas in bovine oviductal cells in response to lipopolysaccharide: implication for early embryonic development. PLoS One, 10:3, e0119388.
  14. Ireland, J. J., Murphee, R. L. & Coulson, P. B. (1980). Accuracy of predicting stages of bovine estrous cycle by gross appearance of the corpus luteum. Journal of Dairy Science, 63, 155-160.
  15. Joshi-Tope, G., Gillespie, M., Vastrik, I., D'Eustachio, P., Schmidt, E., de Bono, B., Jassal, B., Gopinath, G. R., Wu, G. R., Matthews, L., Lewis, S., Birney, E. & Stein, L. (2005). Reactome: a knowledgebase of biological pathways. Nucleic Acids Research, 33, 428-432.
  16. Joshi, M. (1988). Isolation, cell culture and immunocytochemical characterization of oviduct epithelial cells of the cow. Journal of Reproduction and Fertility, 83, 249-261.
  17. Jupe, S., Fabregat, A. & Hermjakob, H. (2015). Expression data analysis with Reactome. Current Protocols in Bioinformatics, 49, 1-9.
  18. Kölle, S., Reese, S. & Kummer, W. (2010). New aspects of gamete transport, fertilization, and embryonic development in the oviduct gained by means of live cell imaging. Theriogenology, 73, 786-795.
  19. Kowsar, R., Hambruch, N., Liu, J., Shimizu, T., Pfarrer, C. & Miyamoto, A. (2013). Regulation of innate immune function in bovine oviduct epithelial cells in culture: the homeostatic role of epithelial cells in balancing Th1/Th2 response. Journal of Reproduction and Development, 59, 470-478.
  20. Kowsar, R., Jiemtaweeboon, S., Shirasuna, K., Shimizu, T., Sasaki, M., Kitamura, N. & Miyamoto, A. (2014). Accumulation of eosinophils in the infundibulum of the bovine oviduct just after ovulation. The Journal of Veterinary Medical Science, 76, 1231-1234.
  21. Kroemer, G., Galluzzi, L., Vandenabeele, P., Abrams, J., Alnemri, E. S., Baehrecke, E., Blagosklonny, M., El-Deiry, W., Golstein, P. & Green, D. (2009). Classification of cell death: recommendations of the nomenclature committee on cell death. Cell Death and Differentiation, 16, 3-11.
  22. Kumar, H., Kawai, T. & Akira, S. (2009). Toll-like receptors and innate immunity. Biochemical and BiophysicalRresearch Communications, 388, 621-625.
  23. Lamy, J., Liere, P., Pianos, A., Aprahamian, F., Mermillod, P. & Saint-Dizier, M. (2016). Steroid hormones in bovine oviductal fluid during the estrous cycle. Theriogenology, 86, 1409-1420.
  24. Lu, Y. C., Yeh, W. C. & Ohashi, P. S. (2008). LPS/TLR4 signal transduction pathway. Cytokine, 42, 145-151.
  25. Medzhitov, R. (2001). Toll-like receptors and innate immunity. Nature Reviews Immunology, 1, 135-145.
  26. Mor, G. & Cardenas, I. (2010). The immune system in pregnancy: A unique complexity. American Journal of Reproductive Immunology, 63, 425-433.
  27. Netea, M. G., Van der Meer, J. W. & Kullberg, B. J. (2004). Toll-like receptors as an escape mechanism from the host defense. Trends in Microbiology, 12, 484-488.
  28. Ohashi, K., Burkart, V., Flohé, S. & Kolb, H. (2000). Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. The Journal of Immunology, 164, 558-561.
  29. O’Neill, L. A. J. (2006). How Toll-like receptors signal: what we know and what we don’t know. Current Opinion in Immunology, 18, 3-9.
  30. Robertson, S. A., Chin, P. Y., Femia, J. G. & Brown, H. M. (2018). Embryotoxic cytokines-Potential roles in embryo loss and fetal programming. Journalof Reproductive Immunology, 125, 80-88.
  31. Schleimer, R. P., Kato, A., Kern, R., Kuperman, D. & Avila, P. C. (2007). Epithelium: at the interface of innate and adaptive immune responses. Journal of Allergy and Clinical Immunology, 120, 1279-1284.
  32. Shimada, M., Yanai, Y., Okazaki, T., Noma, N., Kawashima, I., Mori, T. & Richards, J. S. (2008). Hyaluronan fragments generated by sperm-secreted hyaluronidase stimulate cytokine/chemokine production via the TLR2 and TLR4 pathway in cumulus cells of ovulated COCs, which may enhance fertilization. Development, 135, 2001-2011.
  33. Suarez, S. S. & Pacey, A. A. (2006). Sperm transport in the female reproductive tract. Human Reproduction Update, 12, 23-37.
  34. Swamy, M., Jamora, C., Havran, W. & Hayday, A. (2010). Epithelial decision makers: in search of the 'epimmunome'. Nature Immunology, 11, 656-665.
  35. Taylor, K. R., Trowbridge, J. M., Rudisill, J. A., Termeer, C. C., Simon, J. C. & Gallo, R. L. (2004). Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. Journal of Biological Chemistry, 279, 17079-17084.
  36. Verthelyi, D. (2001). Sex hormones as immunomodulators in health and disease. International Immunopharmacology, 1, 983-993.
  37. Watanabe, S., Shirasuna, K., Matsui, M., Yamamoto, D., Berisha, B., Schams, D. & Miyamoto, A. (2006). Effect of intraluteal injection of endothelin type A receptor antagonist on PGF2alpha-induced luteolysis in the cow. Journal of Reproduction and Development, 52, 551-559.
  38. Werner, J., Decarlo, C. A., Escott, N., Zehbe, I. & Ulanova, M. (2012). Expression of integrins and Toll-like receptors in cervical cancer: effect of infectious agents.Innate Immunity, 18, 55-69.
  39. Zandieh, Z., Amjadi, F., Ashrafi, M., Aflatoonian, A., Fazeli, A. & Aflatoonian, R. (2016). The effect of estradiol and progesterone on toll like receptor gene expression in a human fallopian tube epithelial cell line. Cell Journal (Yakhteh), 17, 678-691.