8954856055505db

تأثیر افزودن روی و مس به جیرۀ میش‌های آبستن در اواخر دورۀ آبستنی بر پروفیل مواد کانی خون و شیر، عملکرد رشد بره‌ها و برخی فراسنجه‌های خونی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد، گروه علوم دامی، دانشکده کشاورزی، دانشگاه بوعلی سینا همدان، ایران

2 دانشیار، گروه علوم دامی، دانشکده کشاورزی، دانشگاه بوعلی سینا همدان، ایران

3 استادیار، گروه علوم دامی، دانشکده کشاورزی، دانشگاه بوعلی سینا همدان، ایران

4 دانشجوی دکتری، گروه علوم دامی، دانشکده کشاورزی، دانشگاه بوعلی سینا همدان، ایران

چکیده

هدف از این تحقیق بررسی تأثیر افزودن روی و مس به جیرۀ میش­های آبستن نژاد مهربان در اواخر دورۀ آبستنی بر رخ‌نمای (پروفیل) مواد کانی خون و شیر میش­ها، عملکرد رشد بره­های آن‌ها و برخی فراسنجه­های سوخت‌وسازی (متابولیکی) و خون‌شناختی (هماتولوژی) بود. هفده رأس میش­3-4 ساله، 45­روز پیش از زایمان به سه گروه تقسیم شدند. تیمارها شامل: 1) ­جیرۀ پایۀ بدون مکمل روی و مس­ (حاوی 98/18 قسمت در میلیون یا پی­پی­ام روی و 51/7 پی­پی­ام مس)؛ 2)­ جیرۀ پایه افزون بر 30­پی­پی­ام روی به‌صورت سولفات روی و 3) ­جیرۀ پایه افزون بر 30­پی­پی­ام روی به‌صورت سولفات روی و 8 پی­پی­ام مس به‌صورت سولفات مس بود. وزن تولد و وزن 10، 20 و 30­ روزگی بره­ها ثبت شد. در این مدت بره­ها به همراه مادر نگهداری می­شدند. خون­گیری از میش­ها در روزهای 45-، 0 و 30+ زایش و از بره­ها در سن 10 و20 روزگی به­عمل آمد. نمونۀ شیر در روزهای 0، 15­و 30 پس از زایش گرد­آوری شد. افزودن روی و مس به جیره سبب افزایش غلظت روی و مس پلاسما­(میش­ها و بره­ها) و شیر شد ­(05/0>P) اما غلظت آهن شیر و همچنین کلسیم، فسفر سرم بره­ها تحت تأثیر قرار نگرفت ­(05/0<P). در بره­های تیمار 2 و 3 نسبت به گروه شاهد، وزن بدن، افزایش وزن روزانه­، شمار گلبول­های قرمز خون، غلظت هموگلوبین، غلظت سرمی هورمون T3، عنصر روی و آنزیم ­ALP افزایش یافت (05/0>P). غلظت گلوکز، کراتینین، پروتئین کل، آلبومین، گلوبولین، لاکتات دهیدروژناز، تری­گلیسیرید و کلسترول پلاسمای بره­ها تحت تأثیر تیمارها قرار نگرفت ­(05/0<P). نتایج نشان داد، افزودن30­پی­پی­ام روی ­به جیرۀ میش­های آبستن سبب افزایش غلظت روی پلاسما و شیر و درنهایت عملکرد رشد بره­ها می­شود.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of adding zinc and copper to diet of late-pregnant ewes on blood and milk minerals profile, lambs growth performance and some blood parameters

نویسندگان [English]

  • Leyla Cheraghi Mashoof 1
  • Hassan Aliarabi 2
  • Abbas Farahavar 3
  • Pouya Zamani 2
  • Reza Alimohamady 4
1 Former M. Sc. Student, Department of Animal Science, Faculty of Agricultur, Bu-Ali sina University, Hamedan, Iran
2 Associate Professor, Department of Animal Science, Faculty of Agricultur, Bu-Ali sina University, Hamedan, Iran
3 Asistant Professor, Department of Animal Science, Faculty of Agricultur, Bu-Ali sina University, Hamedan, Iran
4 Ph. D. Candidate, Department of Animal Science, Faculty of Agricultur, Bu-Ali sina University, Hamedan, Iran
چکیده [English]

The aim of this study was to investigate the effect of zinc and copper adding to diet of late-pregnant Mehraban breed ewes, on blood and milk minerals profile, lambs growth performance and some blood parameters. Seventeen ewes with 3-4 years old, 45 days before delivery were divided into 3 groups. Treatments includes: treat1) basal diet without supplement (containing 18.98 ppm Zn and 7.51 ppm Cu); 2) basal diet+30 ppm Zn as zinc sulfate, and 3) basal diet+30 ppm zinc as zinc sulfate and 8 ppm Cu as copper sulfate.Lambs were weighed at birth and at 10, 20 and 30 days of age. Lambs were raised with their dams during the experimental period. Blood samples of ewes were collected at -45, 0 and +30 days of delivery and lambs at 10 and 20 days of age. Milk sample was collected at 0, 15, 30 days after delivery. Dietary supplementation of zinc and copper significantly increased plasma (ewes and lambs) and milk zinc and copper concentrations (P<0.05), however, milkiron and also serum Calcium and Phosphorus concentrations were not affected (P>0.05). In treat-2 and 3, lambs body weight, daily gain, red blood cells count, hemoglobin concentration, plasma T3, zinc and ALP concentrations were significantly higher than control group (P<0.05). The concentrations of glucose, creatinine, total protein, albumin, globulin, lactate dehydrogenase, triglycerides, cholesterol were not affected by treatments (P>0.05). The results showed that adding 30 ppm zinc to pregnant ewes' diet result in increase plasma and milk zinc concentrations and finally lambs growth performance.

کلیدواژه‌ها [English]

  • Blood parameters
  • pregnant ewes
  • Zinc and Copper Sulfate
  1. Abdel-Monem, U. M. & El-Shahat, K. H. (2011). Effect of different dietary levels of inorganic zinc oxide on ovarian activities, reproductive performance of Egyptian Baladi ewes and growth of their lambs. Bulgarian Journal of Veterinary Medicine, 14(2), 116-123.
  2. Aihara, K., Nishi, Y., Hatano, S., Kihara, M., Yoshimitsu, K., Takeichi, N. & Usui, T. (1984). Zinc, copper, manganese, and selenium metabolism in thyroid disease. The American Journal of Clinical Nutrition, 40(1), 26-35.
  3. Ajayi, O. B. & Odutuga, A. (2004). Effect of low‐zinc status and essential fatty acids deficiency on the activities of aspartate aminotransferase and alanine aminotransferase in liver and serum of albino rats. Food/Nahrung, 48(2), 88-90.
  4. Akhtar, N., Ahsan, R., Waki, A., Mostafa, C.G.M., Chowdhury, S., Hai, M.A. (2003(. Relationship between zinc and anaemia in chronic haemodialysis patients. TAJ: Journal of Teachers Association, 16 (1), 12-14.
  5. Akomolafe., R. O., Olukiran, O. S., Lmafidon., C. E., Ayannuga, O. A., Oyekunle, J. A., Akanji, B. O. & Oladele, A. A. (2014). A study of two weeks administration of copper sulphate on markers of renal function and feeding pattern of Wistar rats. African Journal of Biochemistry Research, 8(9), 158-165.   
  6. Aliarabi, H., Fadayifar, A., Tabatabaei, M. M., Zamani, P., Bahari, A., Farahavar, A. & Dezfoulian, A. H. (2015). Effect of Zinc Source on Hematological, Metabolic Parameters and Mineral Balance in Lambs. Biological Trace Element Research, 168 (1), 82-90.
  7. Aliarabi, H., MTabatabaei, M., Fadayifar, A., Torkashvan, S., Bahari, A. A., Zamani, P., Alipour, D. & Dezfoulian, A. H. (2011). Effects of Supplementing OrganicZ, with or Without Copper, on performance, Plasma Minerals and Some Enzymes activities in Mehraban Male Lambs. Iranian Journal Animal Science Research, 21(3), 111-121. (in Farsi)
  8. Arelovich, H. M., Labord, H. E., Amela, M. I. & Torrea, M. F. (2008). Effects of dietary addition of zinc and (or) monensin on performance, and digesta kinetics in beef cattle. Spanish journal of Agricultural Research, 6(3), 362-372.
  9. Azizzadeh, M., Mohri, M. & Seifi, H. A. (2005). Effect of oral zinc supplementation on hematology, serum biochemistry, performance, and health in neonatal dairy calves. Comparative Clinical Pathology, 14, 67-71.
  10. Carlson, G. P. (2015). Copper deficiency. Page 1068 in Large Animal Internal Medicine. B. P. Smith, ed. Mosby, St. Louis, MO.
  11. Cerone, S. I., Sansinanea, A. S., Streitenberger, S. A., Garcia, M. C. & Auza, N. J. (2000). Cytochrome c oxidase, Cu, Zn-superoxide dismutase, and ceruloplasmin activities in copper-deficient bovines. Biological Trace Element Research, 73, 269-278.
  12. Chavan, S. J Dildeep, V., Bhramare, K. S., Ravishankar, C., Babitha, V. & Sunanda, C. (2016). The effect of organic and inorganic supplementation on blood hemoglobin and serum cortisol concentration in malabari goat kids. International Journal of Science and Nature, 7 (3), 611-613.
  13. Cheng, J., Fan, C., Zhang, W., Zhu, X., Yan, X., Wang, R. & Jia, Z. (2008). Effects of dietary copper source and level on performance, carcass characteristics and lipid metabolism in lambs. Asian Australasian Journal of Animal Sciences, 21(5), 685.
  14. Cole, C. & Lifshitz, F. (2008). Zinc nutrition and growth retardation. Pediatr Endocrinol Reviews, 5(4), 889-896.
  15. Datta, C., Mondal, M. K. & Biswas, P. (2007). Influence of dietary inorganic and organic form of copper salt on performance, plasma lipids and nutrient utilization of Black Bengal (Capra hircus) goat kids. Animal Feed Science and Technology, 135(3), 191-209.
  16. David, G.M. &. Moir, R.J. (1982). Effect of zinc deficiency on the pregnant ewe and developing foetus. The Journal of Nutrition, 49, 365-372.
  17. Dezfoulian, A. H. & Aliarabi, H. (2016). The effect of different sources and levels of cobalt on performance and some blood parameters and rumen bacterial cellulolytic activity of male goat kids. Ph. D. thesis. Faculty of Agricultur Bu-Ali sina University, Hamedan, Iran.
  18. Dezfoulian, A. H., Aliarabi, H., Tabatabaei, M. M., Zamani, P., Alipour, D., Bahari, A. & Fadayifar, A. (2012). Influence of different levels and sources of copper supplementation on performance, some blood parameters, nutrient digestibility and mineral balance in lambs. Livestock Science, 147(1), 9-19.
  19. Droke, E. A., Gengelbach, G. P. & Spears, J. W. (1998). Influence of level and source (inorganic vs organic) of zinc supplementation on immune function in growing lambs. Asian-Australasian Journal of Animal Science, 11, 139-149.
  20. Dunkley, W. L., Franke, A. A., Robb, J. & Ronning, M. (1968). Influence of dietary copper and ethylenediaminetetraacetate on copper concentration and oxidative stability of milk. Journal of dairy Science, 51(6), 863-866.
  21. Dunkley, W. L., Ronning, M. & Voth, J. (1963). Influence of injection of cows with copper glycinate on blood and milk copper and oxidized flavor in milk. Journal of Dairy Science, 46(10), 1059-1063.
  22. El Hendy, H.A., Yousef, M. I. & Abo El-Naga, N. I. (2001). Effect of dietary zinc deficiency on hematological and biochemical parameters and concentrations of zinc, copper, and iron in growing rats. Toxicology, 167, 163-170.
  23. El-Nour, H. H. M., Rahman, H. M. A. A. & El-Wakeel, S. A. (2010). Effect of zinc-methionine supplementation on reproductive performance, kid's performance, minerals profile and milk quality in early lactating Baladi goats. World Applied Sciences Journal, 9(3), 275-282.
  24. Engle, T. E. (2011). Copper and lipid metabolism in beef cattle: A review. Journal of Animal Science, 89(2), 591-596.
  25. Engle, T. E. & Spears, J. W., (2000). Dietary copper effects on lipid metabolism performance, and ruminal fermentation in finishing steers. Journal of Animal Sciences, 78, 2452-2458.
  26. Fadayifar, A., Aliarabi, H., Tabatabaei, M. M., Zamani, P., Bahari, A. & Malecki, M.(2012). Improvement in lamb performance on barley based diet supplemented with zinc. Livestock Science, 144, 285-289
  27. Freake, H. C., Govoni, K. E., Guda, K., Huang, C. & Zinn, S. A. (2001). Actions and interactions of thyroid hormone and zinc status in growing rats. The Journal of Nutrition, 131(4), 1135-1141.
  28. Frieden, E. (1971). Caeruloplasmin a link between copper and iron metabolism. Advances in Chem Series, 100, 292-321.  
  29. Gambling, L. & McArdle, H. J. (2004). Iron, copper and fetal development. In: Proceedings of the Nutrition Society, 63(4), 553-562.
  30. Garg, A. K. & Vishal Mudgal, R. S. (2008). Effect of organic zinc supplementation on growth, nutrient utilization and mineral profile in lambs. Animal Feed Science and Technology, 144, 82-96.
  31. Gonzalez, B. P. E., Fong, R. N., Gibson, C. J., Fuentealba, I. C. & Cherian, M. G. (2005). Zinc supplementation decreases hepatic copper accumulation in LEC rat. Biological Trace Element Research, 105(1-3), 117-134.
  32. Graham, T. W., Thurmond, M. C., Gershwin, M. E., Picanso, J. P., Garvey, J. S. & Keen, C. L. (1994). Serum zinc and copper concentrations in relation to spontaneous abortion in cows: implications for human fetal loss. Journal of Reproduction and Fertility, 102(1), 253-262.
  33. Hassan, A. A., El Ashry, G. M. & Soliman, S. M. (2011). Effect of supplementation of chelated zinc on milk production in ewes. Food and Nutrition Sciences, 2(7), 706.
  34. Hatfield, P. G., Snowder, G. D., Head Jr, W. A., Glimp, H. A., Stobart, R. H. & Besser, T. (1995). Production by ewes rearing single or twin lambs: effects of dietary crude protein percentage and supplemental zinc methionine. Journal of Animal Science, 73, 1227-1238.
  35. Hatfield, P. G., Swenson C. K., Kott, R. W., Ansotegui, R. P., Roth, N. J. & Robinson B. L. (2001). Zinc and copper status in ewes supplemented with sulfate- and amino acid-complexed forms of zinc and copper. Journal of Animal Sciences, 79, 261-266.
  36. Hefnawy, A. E. & El-khaiat, H. M. (2015). Copper and animal health: Importance, maternal fetal, immunity and DNA relationship, deficiency and toxicit. International Journal for Agro Veterinary and Medical Sciences, 9(5), 195-211.
  37. Hermansen, J. E., Larsen, T. & Andersen, J. O. (1995). Does Zinc Play a Role in the Resistance of Milk to Spontaneous Lipolysis? Int. Dairy Journal, 5, 473-481.
  38. Hidiroglou, M. & Knipfel, J. E. (1981). Maternal fetal relationships of copper, manganese and sulfur in ruminants. A review: Journal of Dairy Science, 64, 1637-1647.
  39. Hostetler, C. E., Kincaid, R. L. & Mirando, M. A. (2003). The role of essential trace elements in embryonic and fetal development in livestock. The Veterinary Journal, 166, 125-139.
  40. Jia, W., Xiaoping Z. H., Wei, Z. H., Jianbo, C. H., Cuihua, G. & Zhihai, J. (2009).Effects of Source of Supplemental Zinc on Performance, Nutrient Digestibility and Plasma Mineral Profile in Cashmere goat. Asian Australion Journal of Animal Science, 22(12), 1648-1653.
  41. Karamuz, H., Agdam Shariyar, H., Gorbani, A., Maheri-Sis, N. & Ghaleh-kandi, J. G. (2010). Effect of zinc oxide supplementation on some serume biochemical values in male broilers. Global Veterinaria, 4(2), 108-111.
  42. Kececi, T. & Keskin, E. (2002). Zinc supplementation decreases total thyroid hormone concentration in small ruminants. Acta Veterinaria Hungarica, 50(1), 93-100.
  43. Khavazi, K., rahimian, H. A., malakooti, M., Saleh Rastin, N. & afshari, M. (2006). Investigation the status of food element in alfalfa soils in hamedan province. Journal of Agricultural Science and Natural Resources, 4(2), 1-4.
  44. Kim, S., Chao, P. Y. & Allen, G. D. (1992). Inhibition of elevated hepatic glutathione abolishes copper deficiency cholesterolemia. Federation of American Societies for Experimental Biolog Journal, 6, 2467-2471
  45. Klein, J. (1990). Immunology. Blackwell Scientific Publications. Inc
  46. Klevay, L. M. (1973). Hypercholesterolemia in rats produced by an increase in the ratio of zinc to copper ingested. The American Journal of Clinical Nutrition, 26(10), 1060-1068.
  47. Kundu, M. S., De, A. K., Jeyakumar, S., Sunder, J., Kundu, A. & Sujatha, T. (2014). Effect of zinc supplementation on reproductive performance of Teressa goat. Vet World, 7, 380-383.
  48. MacDonald, R. S. (2000). The role of zinc in growth and cell proliferation. Journal of Nutrition, 130, 1500-1508.
  49. Malakouti Rad, M. Saleh Rastin, J. N. & Afshari. M. (2002). Forgotten of zinc deficiency within the life cycle of plants, animals and human. Publications Senate, Tehran, Iran
  50. Mallaki, M., Noruzian, M. A. & Khadem, A. A. (2015). Effect of organic zinc supplementation on growth, nutrient utilization, and plasma zinc status in lambs. Turkish Journal of Veterinary and Animal Sciences, 39, 75-80
  51. Mendel, M., Chłopecka M. & Dziekan, N. (2007). Haemolytic crisis in sheep as a result of chronic exposure to copper. Polish Journal of Veterinary Sciences, 10, 51-56.
  52. Miller, W. J., Blackmon, D. M., Gentry, R. P. & Pate, F. M. (1991). Zinc Absorption, Metabolism, and Endogenous Excretion in Zinc-Deficient and Normal Calves over an Extended Time1. Journal of Dairy Science, 74(10), 3535-3543.
  53. Mokhtari, M., Shareati, M. & Gashmardi, N. (2005). Effect Zinc on Thyroid Hormonesconcentration and liver enzymes in Adult male rat. Scientific-Researcher Journal Medical Zanjan University, 13(51), 7-14. (in Farsi)
  54. Mozaffari, A. A., Derakhshanfar, A. & Amoli, J. S. (2009). Industrial copper intoxication of Iranian fat-tailed sheep in Kerman province, Iran. Turkish Journal of Veterinary and Animal Sciences, 33(2), 113-119.
  55. Murniati, T., Idrus, M., Rahardja, D. P., Toleng, A. L. & Ako, A. (2015). Effect of maternal nutrition a different stages of pregnancy in goats (Etawa Cross and Kacang) on Performance of Does and Goat Kids. International Journal of Science and Research, 4(9), 210-215.
  56. Nagalakshmi, D., Dhanalakshmi, K. & Himabindu, D. (2009). Effect of dose and source of supplemental zinc on immune response and oxidative enzymes in lambs. Veterinary Research Communications, 33, 631-644.
  57. Najafzadeh, H., Ghoreishi, S. M., Mohammadian, B., Rahimi, E., Afzalzadeh, M. R., Kazemi varnamkhasti, M. & Ganjealidarani, H. (2013). Serum biochemical and histopathological changes in liver and kidney in lambs after zinc oxide nanoparticles administration. Veterinary World, 6(8), 534-537.
  58. National Research Council. (2007). Nutrient requirements of small ruminants: sheep, goats, cervids, and new world camelids. National Academy Press, Washington, DC.
  59. National Research Council. (2001). Nutrient Requirements of Dairy Animals. (7th Ed). National Research Council/National Academy Press, Washington, DC, USA.
  60. Pauli, J. V. (1983). Colostral transfer of gamma glutamyl transferase in lambs. New Zealand Veterinary Journal, 31(9), 150-151.
  61. Pekary, A. E., Lukaski, H. C., Mena, I. & Hershman, J. M. (1991). Processing of TRH precursor peptides in rat brain and pituitary is zinc dependent. Peptides, 12(5), 1025-1032.
  62. Petering, H. G., Murthy, L. & O'Flaherty, E. (1977). Influence of dietary copper and zinc on rat lipid metabolism. Journal of Agricultural and Food Chemistry, 25(5), 1105-1109.
  63. Rimbach, G., Walter, A., Most, E. & Pallauf, J. (1998). Effect of microbial phytase on zinc bioavailability and cadmium and lead accumulation in growing rats. Food and Chemical Toxicology, 36(1), 7-12.
  64. Rink, L. & Kirchner, H. (2000). Zinc-altered immime function and cytokine production. Journal of Nutrition, 130, 14078-141. IS.
  65. Runlian, W., Zhu, X., Guo, F., Zhang, W. & Jia, Z. (2006). Influence of Different Dietary Levels of Zinc on Performance, Vitamin B12, and Blood Parameters in Lambs. International Journal for Vitamin and Nutrition Research, 76 (6), 353-358.
  66. Rupic, V., Ivandija, L., Luterotti, S., Dominis-Kramaric, M. & Bozac, R. (1998). Plasma proteins and haematological parameter in fattening pigs fed different source of dietary zinc. Acta Veterinary Hung, 46, 111-126.
  67. Sobhanirad, S. & Naserian, A. A. (2012). Effects of high dietary zinc concentration and zinc sources on hematology and biochemistry of blood serum in Holstein dairy cows. Animal Feed Science and Technology, 177(3), 242-246
  68. Sobhanirad, S., Mashhadi, M. H. & Kashani, R. B. (2014). Effects of source and level of zinc on haematological and biochemical parameters in Baluchi lambs. Research Opinions in Animal & Veterinary Sciences, 4(7), 389-393.
  69. Solaiman, S. G., Shoemaker, C. E. & D’Andrea, G. H. (2006). The effect of high dietary Cu on health, growth performance, and Cu status in young goats. Small Ruminant Research, 66, 85-91.
  70. Spears, J. W. & Weiss, W. P. (2008(. Role of antioxidants and trace elements in health and immunity of transition dairy cows. Veterinary Journal, 176, 70-76.
  71. Suttle, N. (2010). Mineral nutrition of livestock. (4th Ed.). Midlothian Eh26.
  72. Tauler, P., Sureda, A., Cases, N., Aguiló, A., Rodríguez-Marroyo, J. A., Villa, G. & Pons, A. (2006). Increased lymphocyte antioxidant defences in response to exhaustive exercise do not prevent oxidative damage. The Journal of Nutritional Biochemistry, 17(10), 665-671.
  73. Valipour Cheharda Cheric, S. & Rafierad, M. (2015). The effect of acute prescription of zinc oxide nanofarices on thyroid hormone in adult male rats. International Journal of Biology, Pharmacy and Allied Sciences, 4(9), 5906-5914.
  74. Westterma, L. R. & Constabel, F. (1982). Plant tissue culture metbods. 2deev. (Ed). Sasatoon: National Research Council of Canada, Prairie Regional Laboratory.
  75. White, C. L., Chandler, B. S. & Peter, D. W. (1991). Zinc supplementation of lactating ewes and weaned lambs grazing improved mediterranean pastures. Animal Production Science, 31(2), 183-189.
  76. Yatoo, M. I., Saxena, A., Deepa, P. M., Habeab, B. P., Devi, S., Jatav, R. S. & Dimri, U. (2013). Role of trace elements in animals: a review. Veterinary World, 6(12), 963-967.
  77. Yousef, M. I., El Hendy, H. A., El-Demerdash, F. M. & Elagamy, E. I. (2002). Dietary zinc deficiency induced-changes in the activity of enzymes and the levels of free radicals, lipids and protein electrophoretic behavior in growing rats. Toxicology, 175(1), 223-234.
  78. Yuzbasiyan-Gurkan, V., Grider, A., Nostrant, T., Cousins, R. J. & Brewer, G. J. (1992). Treatment of Wilson's disease with zinc: X. Intestinal metallothionein induction. The Journal of Laboratory and Clinical Medicine, 120(3), 380-386.
  79. Zaboli, K., Aliarabi, H., Bahari, A. A. & Abbasalipourkabir, R. (2013). Role of dietary nano-zinc oxide on growth performance and blood levels of mineral: A study on in Iranian Angora (Markhoz) goat kids. Int Advis. Journal of Pharmaceutical and Health Sciences, 2(1), 19-26.
  80. Zali, A. & Ganjkhanlou, M. (2009). Effect of zinc from zinc sulfate on trace mineral concentrations of milk in Varamini ewes. African Journal of Biotechnology, 8(22), 6464-6469.