8954856055505db

تجزیه‌وتحلیل ژنتیکی تولید موهر در بز مرخز با مدل سیتوپلاسمی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار، گروه علوم دامی، دانشکدۀ علوم دامی و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان

2 کارشناس ارشد ژنتیک و اصلاح نژاد دام و دانش‌آموختۀ دانشکدۀ علوم دامی و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان

3 استاد، گروه علوم دامی، دانشکدۀ کشاورزی دانشگاه کردستان

چکیده

در این پژوهش توارث سیتوپلاسمی وزن بیدۀ یک‌سالگی در بز نژاد مرخز با استفاده از روش آماری بیزی بررسی شد. برای برآورد فراسنجه (پارامتر)های ژنتیکی از رکوردهای گردآوری‌شده در سال‌های 1390-1371 در ایستگاه پژوهشی اصلاح نژاد بز مرخز در سنندج استفاده شد. برای بررسی اثر عامل‌های محیطی بر داده‌های این صفت از رویۀ GLM نرم‌افزار آماری SAS و برای برآورد فراسنجه‌های ژنتیکی از نرم‌افزار Gibbs1f90، بر پایۀ مدل دام از رویۀ نمونه‌گیری گیبس، استفاده شد. عامل‌هایی مانند سال تولد، جنس و سن مادر به‌عنوان اثر ثابت و سن دام و وزن بدن در هنگام رکورد برداری به‌عنوان متغیرهای کمکی در مدل گنجانده  شدند. بنابر نتایج به‌دست‌آمده از این پژوهش، بهترین مدل انتخاب‌شده برای صفت وزن بیده، مدل دربرگیرندۀ اثر ژنتیکی افزایشی مستقیم، ژنتیکی افزایشی مادری، محیط دائمی مادری و اثر ژنتیکی سیتوپلاسمی با در نظر گرفتن کوواریانس بین اثر ژنتیکی افزایشی مستقیم و مادری بود. درصد واریانس ژنتیکی افزایشی مستقیم، ژنتیکی افزایشی مادری، محیط دائمی مادری و ژنتیکی سیتوپلاسمی به ترتیب 27/19، 6/6، 03/3 و 82/1 از کل واریانس برآورد شد. نقش اثر سیتوپلاسمی با توجه به معنی­دار بودن برای ورود به مدل از یک‌سو و کم بودن میزان واریانس آن از سوی دیگر، به­عنوان تصحیح­کننده اهمیت دارد، ولی نمی­تواند به­عنوان معیار انتخاب لحاظ شود.

کلیدواژه‌ها


عنوان مقاله [English]

Genetic analysis of yearling Mohair by Cytoplasmic model

نویسندگان [English]

  • Jamal Fayazi 1
  • Emran Rostami 2
  • Amir Rashidi 3
1 Associate Professor, Department of Animal Science, Faculty of Animal Science and Food Technology, Khuzestan Agricultural ‎Sciences and Natural Resources University, Iran
2 M.Sc. in Animal Genetic and Breeding, and Former M.Sc. Student, Faculty of Animal Science and Food Technology, Khuzestan ‎Agricultural Sciences and Natural Resources University, Iran
3 Professor, Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
چکیده [English]

In this research, cytoplasmic inheritance of yearling mohair weight (YMW) in Markhoz kids were studied by using Bayesian statistical method. Using records which gathered through 1992-2011 in Markhoz goat breeding research station in Sanandaj. GLM procedure of SAS statistical software was used to verify statistical significant of environmental factors on YMW and Gibbs1f90 software, based on animal model and Gibbs sampling, were used to estimate genetic parameters . Environmental factors such as year of birth, maternal age and sex as fixed effects, and animal age and body weight at recording time as covariates were considered in the model. Based on the results of this research, the minimum DIC was detected in Model 12. Which includes direct additive genetic effects, maternal additive genetic, maternal permanent environment and cytoplasmic genetic effects, taking into account the covariance between direct and maternal genetic effects. The ratios of direct additive genetic variance, maternal additive genetic, maternal permanent environment, cytoplasmic genetic on phenotypic variance were respectively 19.27, 6.6, 3.03 and 1.82 percent based on the selected model (model 12). In general, the results showed that selection based on direct genetic potential and partly on maternal genetic can improve the YMW. Due to the significant of cytoplasmic effects to enter the model on one hand and the low value of its variance on the other hand, it can be concluded that the role of Cytoplasmic inheritance as a correction factor is important, but it cannot be considered as selection criteria.

کلیدواژه‌ها [English]

  • Cytoplasmic inheritance
  • Gibbs sampling
  • heritability
  • Markhoz goat
  • mohair
  1. Baghchehmaryam, M. B., Moradi shahrebabak, M., Miraei-Ashtiani, S. R., Rashidi, A. & Sheykh Ahmadi, M. (2010). Estimation of Genetic and Phenotypic Parameters for Some Economic Traits in Markhoz Goat. AnimalProductionResearch, 1, 15-11. (in Farsi)
  2. Barazandeh, A., Moghbeli, S. M., Hossein-Zadeh, N. G. & Vatankhah, M. (2012). Genetic evaluation of growth in Raini goat using random regression models. Livestock Science, 145(1), 1-6.
  3. Bell, B. R., McDaniel, B. T. & Robison, O. W. (1985). Effects of Cytoplasmic Inheritance on Production Traits of Dairy Cattle. Journal of Dairy Science, 68, 2038-2051.
  4. Berg, A., Mayer, R. & Yu, J. (2004). Deviance Information Criterion for Comparing Stochastic Volatility Models. Journal of Business & Economic Statistics, 22(1), 107-120.
  5. Brown, W. M., George M. & Wilson, A. C. (1979). Rapid evolution of animal mitochondrial DNA. Proceeding of National Academic Science, 76, 1967-1971.
  6. Deimi Ghias Abadi, P., Alijani, S., Shodja Ghias, J. & Pirani, N. (2012). Comparison of tow restricted maximum likelihood (REML) and bayesian statistical methods for estimating genetic parameter of some economically important traits in Fars native chickens. Research on Animal Production, 3 (5), 1-13.
  7. Dixit, S. P., Dhillon, J. S. & Singh, G. (2001). Genetic and non-genetic parameters for growth traits of Bharat Merino lambs. Small Ruminant Research, 42, 101-104.
  8. Fathi, M. H. & Farhang Far, H. (2009). The nutrition of goats. National Conference on Animal fibers, 1, 205-207. (in Farsi)
  9. Gibson, J. P., Freeman, A. E. & Boettcher, P. J. (1997). Cytoplasmic and mitochondrial inheritance of economic traits in cattle.  Livestock Production Science, 47,115-124.
  10. Hanford, K. J., Snowder, G. D. & Van Vleck, L. D. (2003). Models with nuclear, cytoplasmic, and environmental effects for production traits of Columbia sheep. Journal of Animal Science, 81, 1926-1932.
  11. Hohenboken W. D. (1985). Maternal effect. In: World Animal Science. General and quantitative genetics (AB Chapman, ed), Elsevier, Amsterdam, 135-149.
  12. Kheirabadi, K., Alijani, S., Rafat, S. A. & Moghaddam, Gh. (2014). Comparison of two different statistical methods in estimation of (co)variance components of milk production traits of Iranian Holstein cows. Journal of Ruminant Research, 1 (4), 127-142. (in Farsi)
  13. Klvndy, A. S., Qazykhanyshad, A. S. & Shokrollahi, B. (2011). Estimation of genetic parameters for growth traits and fleece weight one year of the goat Markhoz. Journalof Veterinary Medicine, Islamic Azad University. 5(2), 52-47. (in Farsi)
  14. Meyer, A. (1994). DNA technology and phylogeny of fish. In: A.R. Beaumont (Ed), Genetics and evolution of aquatic organisms. Chapman and Hall, London.UK.
  15. Misztal, I. (2008). BLUPF90: a flexible mixed model program in Fortran 90. Available at. <http://nce.ads.uga.edu/~ignacy/numpub/blupf90/docs/>. Accessed on: 08 Oct. 2014.
  16. Pun, A., Goyache, F., Cervantes, I. & Gutiérrez, J.P. (2012). Cytoplasmic line effects for birth weight and preweaning growth traits in the Asturiana de los Valles beef cattle breed. Livestock Science, 143, 177-183.
  17. Rashidi, A., Kashan, N., Miraei-Ashtiani, S. R., Rahimi, Sh. & Vaeztrshyzy, R. (2000). Variance-covariance estimate of components and genetic parameters for body weight at Goats Markhoz. Journal of Agricultural SciencesIran, 3, 262-255. (in Farsi)
  18. Rashidi, A., Ramezanian, M. & Vaztrshyzy, R. (2005). Estimation of genetic and environmental economics Markhoz goats. IranianJournal of Agricultural Science, 36(5), 1130-1120. (in Farsi)
  19. Rostami, E. (2015). Estimation of genetic parameters for growth traits and mohair yield of Markhoz goat by Bayesian method. Thesis for Master of Science genetic and animal breeding. Ramin University. (in Farsi)
  20. Roughsedge, T., Brotherstone, S. & Visscher, P. M. (2001). Bias and power in the estimation of a maternal family variance component in the presence of incomplete and incorrect pedigree information. Journal of Dairy Science, 84, 944-950.
  21. Salehi, A., Gharahvaisi, S. & VaezTorshizi R. (2005). Cytoplasmic inheritance of production traits of Baluchi sheep. Researchanddevelopmentin animal breedingandaquaculture.73, 195-188. (in Farsi)
  22. Salehi, A. & James, J. W. (1997). Detection of cytoplasmic effects on production: the influence of number of years of data. Genetic Selection Evolution, 29, 269-277.
  23. Sargolzaei, M., Iwaisaki, H., & Colleau, J. (2006). CFC, contribution, inbreeding (F), coancestry. Release1.  http://agrews.agr.niigata-u.ac.jp/~iwsk/cfc.html.
  24. Sataei Mokhtari, M., Rashidi, A., Barazandeh, A., Domari, H. & Molaei, S. (2009). Genetic analysis of wool weight in Kermani sheep. Proceedings of the National Conference on Textile Fiber. Tabriz. Iran. 13-15. (in Farsi)
  25. Schenkel, F. S., Schaeffer, L. R. & Boettcher, P. J. (2002). Comparison between estimation of breeding values and fixed effects using Bayesian and empirical BLUP estimation under selection on parents and missing pedigree information. Genetic Selection Evolution, 34, 41-59.
  26. Snowder, G. D., Hanford, K. J. & Van Vleck, L. D. (2004). Comparison of models including cytoplasmic effects for traits of Rambouillet sheep. Livestock Production Science, 90, 159-166.
  27. Southwood, O. L, Kennedy, B. W., Meyer, K. & Gibson, J. P. (1989). Estimation of additive maternal and cytoplasmic genetic variances in animal models. Journal of Dairy Science, 72, 3006-3012.
  28. Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & van der Linde, A. (2014). The deviance information criterion: 12 years on (with discussion). Journal of the Royal Statistical Society, 76 (3), 485-493.
  29. Van Vleck, L. D., Hanford, K. J. & Snowder, G. D. (2004). Lack of evidence for cytoplasmic effects for four traits of Polypay sheep. Faculty Papers and Publications in Animal Science. Paper 213.
  30. Willham, R. L. (1972). The role of maternal effects in animal breeding. IIIBiometrical aspects of maternal effects in animals. Journal of Animal Science, 35, 1288-1293.