تأثیر تغذیۀ درون تخم‌مرغی بتا- هیدروکسی بتا- متیل‌بوتیرات و دکسترین و محرومیت آب و خوراک پس از تفریخ بر ذخایر گلیکوژن بدن و ریخت‌شناسی میان رودۀ جوجه‌های گوشتی در سن هفت‌روزگی با استفاده از روش رویۀ پاسخ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم دامی، دانشکدۀ کشاورزی، دانشگاه گیلان، رشت، ایران

2 دانشیار، گروه علوم دامی، دانشکدۀ کشاورزی، دانشگاه گیلان، رشت، ایران

3 استادیار، گروه علوم دامی، دانشکدۀ کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

پاسخ جوجه­های گوشتی به تغذیۀ درون تخم­مرغی بتا- هیدروکسی بتا- متیل­بوتیرات (HMB) و دکسترین و زمان دسترسی به نخستین خوراک با استفاده از طرح باکس- بنکن و روش رویۀ پاسخ ارزیابی شد. در روز 18 دورۀ جوجه­کشی، 1500 عدد تخم­مرغ قابل جوجه­کشی سویۀ راس 308 به‌طور تصادفی به تیمارهای آزمایشی به‌دست‌آمده از طرح باکس- بنکن، هرکدام شامل چهار تکرار، سه سطح تغذیۀ درون تخم­مرغی HMB (0، 5/0 و 1 درصد) و دکسترین (0، 20 و 40 درصد)، و سه سطح زمان دسترسی به نخستین خوراک (6، 27 و 48 ساعت) اختصاص داده شدند. تغذیۀ درون تخم­مرغی دکسترین منجر به کاهش معنی­دار قابلیت جوجه درآوری شد (05/0>P)، درحالی‌که تغذیۀ درون تخم­مرغی HMB تأثیر معنی­داری بر قابلیت جوجه درآوری نداشت (05/0<P). در مدل­های شاخص کارایی تولید اروپایی، مساحت پرزهای میان روده (ژژنوم) و میزان گلیکوژن بافت کبد و ماهیچۀ سینۀ جوجه­های گوشتی در سن هفت‌روزگی، اجزاء خطی بیشترین (61/0 تا 79/0) مشارکت را برای توضیح وجود واریانس در پاسخ جوجه­های گوشتی داشتند. نتایج این تحقیق نشان داد، دستیابی به بالاترین شاخص کارایی تولید اروپایی در سن هفت‌روزگی با تغذیۀ درون تخم­مرغی HMB و دکسترین (به ترتیب میزان 54/0 و 03/39 درصد) در مایع آمنیونی تا بیشینه 79/20 ساعت گرسنگی پس از تفریخ میسر است.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of in-ovo feeding of beta-hydroxy beta-methylbutyrate and dextrin and posthatching water and feed deprivation on body glycogen resources and jejunal morphology of broilers at 7 days of age using response surface methodology

نویسندگان [English]

  • Moein Ghanaatparast-Rashti 1
  • Majid Mottaghitalab 2
  • Hamed Ahmadi 3
1 Ph.D. Student and, Department of Animal Science, Faculty of Agriculture Science, University of Guilan, PO Box 41635-1314, Tehran, Iran
2 Associatet Professor, Department of Animal Science, Faculty of Agriculture Science, University of Guilan, PO Box 41635-1314, Tehran, Iran
3 Assistant Professor, Department of Poultry Science, Faculty of Agriculture Science, Tarbiat Modares University, PO Box 14115-336, Tehran, Iran
چکیده [English]

This research was conducted to evaluate broiler response to in-ovo feeding of beta-hydroxy beta-methylbutyrate (HMB) and dextrin and the timing of the first feed deprivation using Box-Behnken design and response surface methodology. On day 18 of incubation, 1500 fertile eggs from Ross 308 strain were randomly assigned to experimental treatments of Box-Behnken design, each with 4 replicates, as 3 levels in-ovo injection of HMB (0, 0.5 and 1 %) and dextrin (0, 20 and 40 %), and 3 levels of the first water and feed restriction time (6, 27 and 48 hours). The in-ovo injection of dextrin led to significant lower hatchability (P<0.05), whereas in-ovo injection of HMB had no significant effect on hatchability (P>0.05). In European efficiency factor models, the jejunal villi surface area and glycogen contents of liver and breast muscle at 7 days of age, the linear components showed highest contribution (0.61 to 0.79) of variation in chick responses. The results of this research showed that maximum European efficiency factor at 7 days of age can be achieved by in-ovo administration of HMB and dextrin (0.54 and 39.03 percent, respectively) in amnion fluid till maximum 20.79 hours feed deprivation after hatch.

کلیدواژه‌ها [English]

  • Amnion fluid
  • efficiency factor
  • histomorphometry
  • Response Surface Methodology
  1. Ahmadi, H. & Golian, A. (2010). The integration of broiler chicken threonine responses data into neural network models. Poultry Science, 89,2535-2541.
  2. Ahmadi, H. & Golian, A. (2011). Response surface and neural network models for performance of broiler chicks fed diets varying in digestible protein and critical amino acids from 11 to 17 days of age. Poultry Science, 90, 2085-2096.
  3. Bello, A., Zhai, W., Gerard, P. D. & Peebles, E. D. (2013). Effects of the commercial in-ovo injection of 25-hydroxycholecalciferol on the hatchability and hatching chick quality of broilers. Poultry Science, 92, 2551-2559.
  4. Box, G. E. P., Hunter, W. G. & Hunter, J. S. (1978). Statistics for Experimenters: An Introduction to Design, Data Analysis and Model Building. (2nd ed.). John Wiley and Sons Publication. New York, USA, (pp. 437-538).
  5. De Leon, A. C., Kidd, M. T. & Corzo, A. (2010). Box-Behnken Design: alternative multivariate design in broiler nutrition research. Worlds Poultry Science Journal, 66, 699-706.
  6. Decuypere, E. & Bruggeman, V. (2007). The endocrine interface of environmental and egg factors affecting chick quality. Poultry Science, 86, 1037-1042.
  7. Decuypere, E. Tona, K., Bruggeman, V. & Bamelis, F. (2001). The day-old chick: a crucial hinge between breeders and broilers. Worlds Poultry Science Journal, 57, 127-138.
  8. Dreiling, C. E., Brown, D. E., Casale, L. & Kelly, L. (1987). Muscle glycogen: Comparison of iodine binding and enzyme digestion assays and application to meat samples. Meat Science, 20, 167-177.
  9. Farouk, M. M., Al-Mazeedi, H. M., Sabow, A. B., Bekhit, A. E. D., Adeyemi, K. D., Sazili, A. Q. & Ghani, A. (2014). Halal and kosher slaughter methods and meat quality: A review. Meat Science, 98, 505-51.
  10. Ferreira, S. L. C., Bruns, R. E., da Silva, E. G. P., dos Santos, W. N. L., Quintella, C. M., David, J. M. & Neto, B. B. (2007) Statistical designs and response surface techniques for the optimization of chromatographic systems. Journal of Chromatography A, 1158, 2-14.
  11. Foye, O. T., Uni, Z. & Ferket, P. R. (2006). Effect of in-ovo feeding egg white protein, β-hydroxy-β-methylbutyrate, and carbohydrates on glycogen status and neonatal growth of turkeys. Poultry Science, 85, 1185-1192.
  12. Hamadani, H., Alam Khan, A., Banday, M. T. & Hamadani, A. (2013). Early chick feeding and in-ovo nutrition two managemental strategies to combat the effects of delayed feeding. International Journal of Modern Plant and Animal Sciences, 1, 123-141.
  13. Hu, R. (1999). Food Product Design: A Computer-Aided Statistical Approach (1st ed.). CRC Press. Washington, USA, (pp. 23-45).
  14. Huff, G. R., Huff, W. E., Jalukar, S., Oppy, J., Rath, N. C. & Packialakshmi, B. (2013). The effects of yeast feed supplementation on turkey performance and pathogen colonization in a transport stress/Escherichia coli challenge. Poultry Science, 92, 655-662.
  15. Juul-Madsen, H. R., Su, G. & Sorensen, P. (2004). Influence of early or late start of first feeding on growth and immune phenotype of broilers. British Poultry Science, 45, 210-222.
  16. Kadam, M. M., Barekatain, M. R., Bhanja, S. & Iji, P. A. (2013). Prospects of in-ovo feeding and nutrient supplementation for poultry: the science and commercial applications–a review. Journal of the Science of Food and Agriculture, 93, 3654-3661.
  17. Kornasio, R., Halevy, O., Kedar, O. & Uni, Z. (2011). Effect of in-ovo feeding and its interaction with timing of first feed on glycogen reserves, muscle growth, and body weight. Poultry Science, 90, 1467-1477.
  18. Lamot, D. M., Van De Linde, I. B., Molenaar, R., Van Der Pol, C. W., Wijtten, P. J. A., Kemp, B. & Van Den Brand, H. (2014). Effects of moment of hatch and feed access on chicken development. Poultry Science, 93, 1-11.
  19. Liu, S. Y., Sydenham, C. J. & Selle, P. H. (2016). Feed access to, and inclusions of fishmeal and corn starch in, sorghum-based broiler diets influence growth performance and nutrient utilization as assessed by the Box-Behnken response surface design. Animal Feed Science and Technology, 220, 46-56.
  20. Maiorka, A., Santin, E., Dahlke, F., Boleli, I. C., Furlan, R. L. & Macari, M. (2003). Posthatching water and feed deprivation affect the gastrointestinal tract and intestinal mucosa development of broiler chicks. Journal of Applied Poultry Research, 12, 483-492.
  21. Moran, E. T. (1985). Digestion and absorption of carbohydrates in fowl and events through perinatal development. Journal of Nutrition, 115, 665-674.
  22. Myers, R. H. & Montgomery, D. C. (2009). Response Surface Methodology: Process and Product Optimization Using Designed Experiments (3rd ed.). John Wiley and Sons Publication, New York, USA, (pp. 19-39).
  23. National Research Council (1994). Nutrient Requirements of Poultry (9th Revised ed.). National Academy Press, Washington, DC.
  24. Noy, Y. & Uni, Z. (2010). Early nutritional strategies. World's Poultry Science Journal, 66, 639-646.
  25. Oliveira, T. F. B., Bertechini, A. G., Bricka, R. M., Kim, E. J., Gerard, P. D. & Peebles, E. D. (2015). Effects of in-ovo injection of organic zinc, manganese, and copper on the hatchability and bone parameters of broiler hatchlings. Poultry Science, 94, 2488-2494.
  26. Ross. (2014). Ross 308 Broiler Nutrition Specifications. (1st ed.). Ross Broiler Ltd., Scotland, UK. (pp. 6)
  27. Sakamoto, K., Hirose, H., Onizuka, A., Hayashi, M., Futamura, N., Kawamura, Y. & Ezaki T. (2000). Quantitative study of changes in intestinal morphology and mucus gel on total parenteral nutrition in rats. Journal of Surgical Research, 94, 99-106.
  28. SAS Institute (2011). SAS Statistics User’s Guide. Version 9.3 Edition. SAS Inst. Inc., Cary, NC.
  29. Slater, G. J. & Jenkins, D. (2000). β-hydroxy-β-methylbutyrate (HMB) supplementation and the promotion of muscle growth and strength. Sports Medicine, 30, 105-116.
  30. Tako, E., Ferket, P. R. & Uni, Z. (2004). Effects of in-ovo feeding of carbohydrates and beta-hydroxy-beta-methylbutyrate on the development of chicken intestine. Poultry Science, 83, 2023-2028.
  31. Uni, Z. & Ferket, P. R. (2004). Methods for early nutrition and their potential. World's Poultry Science Journal, 60, 101-111.
  32. Uni, Z., Ferket, P. R., Tako, E. & Kedar, O. (2005). In-ovo feeding improves energy status of late-term chicken embryos. Poultry Science, 84, 764-770.
  33. Vega, R. S., Remoral, D. M. S., Lontoc, C. A. A., Octura, J. E. R., Iranzo, M. F. M. & Capitan, S. S. (2014). Effects of beta-benzene hexachloride in-ovo on the embryonic growth and development of domestic mallard ducks (Anas platyrhynchos domesticus L.). Veterinary Medicine and Animal Sciences, 2, 1-6.
  34. Vieira, S. L. & Moran, E. T. (1999). Effects of egg of origin and chick post-hatch nutrition on broiler live performance and meat yields. Worlds Poultry Science Journal, 55, 125-142.
  35. Vieira, S. L., Almeida, J. G., Lima, A. R., Conde, O. R. A. & Olmos, A. R. (2005). Hatching distribution of eggs varying in weight and breeder age. Revista Brasileira de Ciência Avícola, 7, 73-78.
  36. Wang, Y., Li, Y., Willems, E., Willemsen, H., Franssens, L., Koppenol, A. & Everaert, N. (2014). Spread of hatch and delayed feed access affect post hatch performance of female broiler chicks up to day 5. Animal, 8, 610-616.
  37. Willemsen, H., Debonne, M., Swennen, Q., Everaert, N., Careghi, C., Han, H. & Decuypere, E. (2010). Delay in feed access and spread of hatch: importance of early nutrition. Worlds Poultry Science Journal, 66, 177-188.
  38. Yamauchi, K., Kamisoyama, H. & Isshiki, Y. (1996). Effects of fasting and refeeding on structures of the intestinal villi and epithelial cells in white Leghorn hens. British Poultry Science, 37, 909-921.
  39. Zhai, W., Bennett, L. W., Gerard, P. D., Pulikanti, R. & Peebles, E. D. (2011a). Effects of in-ovo injection of carbohydrates on somatic characteristics and liver nutrient profiles of broiler embryos and hatchlings. Poultry Science, 90, 2681-2688.
  40. Zhai, W., Gerard, P. D., Pulikanti, R. & Peebles, E. D. (2011b). Effects of in-ovo injection of carbohydrates on embryonic metabolism, hatchability, and subsequent somatic characteristics of broiler hatchlings. Poultry Science, 90, 2134-2143.
  41. Zhai, W., Rowe, D. E. & Peebles, E. D. (2011c). Effects of commercial in-ovo injection of carbohydrates on broiler embryogenesis. Poultry Science, 90, 1295-1301.