8954856055505db

تأثیر مقیاس ماتریس روابط خویشاوندی ژنگانی بر برآورد مؤلفه ‏های واریانس و درستی پیش‌بینی ارزش ‏های اصلاحی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری ژنتیک و اصلاح نژاد دام، دانشگاه فردوسی مشهد

2 استادیار ژنتیک و اصلاح نژاد دام، دانشگاه فردوسی مشهد

چکیده

در این پژوهش، روش برای پیش‌بینی فراسنجه‌های ناشناختۀ پنج مدل بهترین پیش‌بینی نااریب خطی ژنگانی (ژنومی G-BLUP) از روش بیز و نمونه‏گیری گیبس استفاده شد. در هر مدل از مقیاس­های متفاوتی برای ماتریس G شامل استفاده از فراوانی آللی جمعیت بنیان‌گذار (Gfoun)، فراوانی آللی جمعیت مرجع (Gref)، فراوانی آللی برابر با 5/0 (G05)، یک ماتریس نرمال شده با میانگین عنصرهای قطری برابر با یک (Gnorm) و یک ماتریس G وزن‌شده با ماتریس A (Gwei)، استفاده شد. برای مقایسۀ نتایج از یک جمعیت دارای آمیزش تصادفی و یک جمعیت انتخاب‌شده، برای صفتی با وراثت‌پذیری 25/0 روی یک ژنگان با QTL 105 و 3000 نشانگر تک نوکلئوتیدی روی سه کروموزوم استفاده شد. نتایج نشان داد، عنصرهای ماتریس‏های G در مقایسه با ماتریس A واریانس بالاتری دارند. میانگین عنصرهای قطری و غیر قطری به‌غیراز Gnorm و Gwei از عنصرهای متناظر در A بالاتر بودند. روش‏های Gnorm-BLUP و G05-BLUP در مقایسه با سه روش دیگر منجر به برآورد متورم واریانس ژنتیکی شدند که این تورم در جمعیت انتخاب‌شده کمتر بود. میانگین درستی پنج مدل G-BLUP در جمعیت تصادفی 084/0 بالاتر (736/0 در مقابل 652/0) از جمعیت انتخاب‌شده و میانگین اریبی 014/0 پایین‏تر (026/0 در مقابل 04/0) بود. اریبی پیش‌بینی ارزش اصلاحی حقیقی جمعیت انتخاب‌شده با استفاده از Gwei نزدیک به صفر ولی با Gref بیشتر از 06/0 بود. بیشترین درستی و کمترین اریب می‏تواند با استفاده از فراوانی آللی جمعیت مرجع که با ماتریس A مقیاس شده‏اند، به­دست آید.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of scaling genomic relationship matrix on estimation of variance components and accuracy of breeding values

نویسندگان [English]

  • Sayed Mahdi Hosseini Vardanjani 1
  • Mohammad Mahdi Shariati 2
  • Hossein Naeeimipour Yuonesi 1
1 Ph.D. Student, Animal Breeding and Genetics, Department of Animal Science, University of Mashhad, Iran
2 Assistant Professor, Animal Breeding and Genetics, Department of Animal Science, University of Mashhad, Iran
چکیده [English]

In this study, Bayesian approach via Gibbs sampling was used to predict unknown parameters of five equivalent Genomic Best Linear Unbiased Predictions (G-BLUP), each with different scale of G matrix by using allele frequency of founder population (Gfoun), allele frequency of reference population (Gref), allele frequency equal to 0.5 (G05), a normalized matrix with average diagonal coefficients equal to 1 (Gnorm) and a weighted G matrix with A matrix (Gwei). A random mating population and a selected population were used to compare results of a trait with heritability of 0.25 on a genome constructed of three chromosomes with 105 QTLs and 3000 single nucleotide polymorphisms. The results showed that higher variance existed in the elements of G matrices compared with A matrix. Average diagonal and off-diagonal elements except Gnorm and Gwei were higher than corresponding elements in A. Gnorm-BLUP and G05-BLUP methods led to inflated genetic variance in contrast other three methods and this inflation was lower in selected population. Average accuracy over 5 G-BLUP in random population was 0.084 higher than selected population (0.762 vs. 0.652) and bias was 0.041 lower (0.026 vs. 0.04). Bias of prediction of true breeding value of selected population by using Gwei almost was zero but with Gref greater than 0.06. The greatest accuracy and the smallest bias can be obtained by using allele frequency of reference population that re-scaled with A matrix.

کلیدواژه‌ها [English]

  • Allele frequency
  • Bayesian Approach
  • cross validation
  • genomic prediction
  • predictive ability
  1. Aguilar, I., Misztal, I., Johnson, D., Legarra, A., Tsuruta, S. & Lawlor, T. (2010). Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. Journal of Dairy Science, 93, 743-752.
  2. Bulmer, M. (1976). The effect of selection on genetic variability: a simulation study. Genetical Research, 28, 101-117.
  3. Calus, M. (2010). Genomic breeding value prediction: methods and procedures. Animal, 4, 157-164.
  4. Chen, C.-Y., Misztal, I., Aguilar, I., Legarra, A. & Muir, W. (2011). Effect of different genomic relationship matrices on accuracy and scale. Journal of animal science 89, 2673-2679.
  5. Christensen, O. F., Madsen, P., Nielsen, B., Ostersen, T. & Su, G. (2012). Single-step methods for genomic evaluation in pigs. Animal, 6, 1565-1571.
  6. Daetwyler, H. D., Pong-Wong, R., Villanueva, B. & Woolliams, J. A. (2010). The impact of genetic architecture on genome-wide evaluation methods. Genetics, 185, 1021-1031.
  7. Falconer, D. & Mackay, T. (1995). Introduction to Q uantitative Genetics. Longman 19, 1.
  8. Forni, S., Aguilar, I. & Misztal, I. (2011). Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information. Genetics Selection Evoluation, 43.
  9. Gao, H., Christensen, O. F., Madsen, P., Nielsen, U. S., Zhang, Y., Lund, M. S. & Su, G. (2012). Comparison on genomic predictions using three GBLUP methods and two single-step blending methods in the Nordic Holstein population. Genetics Selection Evoluation, 44, 10.1186.
  10. Gengler, N., Mayeres, P. & Szydlowski, M. (2007). A simple method to approximate gene content in large pedigree populations: application to the myostatin gene in dual-purpose Belgian Blue cattle. Animal, 1, 21-28.
  11. Habier, D., Fernando, R. & Dekkers, J. (2007). The impact of genetic relationship information on genome-assisted breeding values. Genetics, 177, 2389-2397.
  12. Habier, D., Tetens, J., Seefried, F.-R., Lichtner, P. & Thaller, G. (2010). The impact of genetic relationship information on genomic breeding values in German Holstein cattle. Genetics Selection Evolution, 42, 5.
  13. Harris, B. & Johnson, D. (2010). Genomic predictions for New Zealand dairy bulls and integration with national genetic evaluation. Journal of Dairy Science, 93, 1243-1252.
  14. Hayes, B. & Goddard, M. (2008). Technical note: prediction of breeding values using marker-derived relationship matrices. Journal of Animal Science, 86, 2089-2092.
  15. Henderson, C. (1984). Applications of linear models in animal breeding (University of Guelph, Guelph, ON, Canada).
  16. Makgahlela, M., Strandén, I., Nielsen, U., Sillanpää, M. & Mäntysaari, E. (2013). The estimation of genomic relationships using breedwise allele frequencies among animals in multibreed populations. Journal of Dairy Science, 96, 5364-5375.
  17. Mäntysaari, E., Liu, Z. & VanRaden, P. (2010). Interbull validation test for genomic evaluations. Interbull bulletin,17.
  18. Meuwissen, T., Luan, T. & Woolliams, J. (2011). The unified approach to the use of genomic and pedigree information in genomic evaluations revisited. Journal of Animal Breeding and Genetics, 128, 429-439.
  19. Nejati-Javaremi, A., Smith, C. & Gibson, J. (1997). Effect of total allelic relationship on accuracy of evaluation and response to selection. Journal of Animal Science, 75, 1738-1745.
  20. Sargolzaei, M. & Schenkel, F.S. (2009). QMSim: a large-scale genome simulator for livestock. Bioinformatics, 25, 680-681.
  21. Tiezzi, F. & Maltecca, C. (2015). Accounting for trait architecture in genomic predictions of US Holstein cattle using a weighted realized relationship matrix. Genetics Selection Evolution 47, 24.
  22. VanRaden, P. (2008). Efficient methods to compute genomic predictions. Journal of Dairy Science, 91, 4414-4423.
  23. Vitezica, Z., Aguilar, I., Misztal, I. & Legarra, A. (2011). Bias in genomic predictions for populations under selection. Genetics Research, 93, 357-366.