تأثیر نانوذرات اکسید روی و باسیلوس‌کوآگولانس بر عملکرد، جمعیت میکروبی و فراسنجه‌های خونی جوجه‌های گوشتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه علوم دامی، دانشکدة کشاورزی، دانشگاه شهید باهنر کرمان

2 دانشیار، گروه علوم دامی، دانشکدة کشاورزی، دانشگاه شهید باهنر کرمان

چکیده

این پژوهش به‌منظور ارزیابی تأثیر نانو‌ذرات اکسید روی و ریزاندامگان سلامت‌بخش (پروبیوتیک) بر عملکرد، جمعیت میکروبی و فراسنجه‌های خون جوجه‌های خروس (راس 308) انجام شد. این آزمایش با 288 قطعه جوجه در قالب طرح کامل تصادفی با شش تیمار، چهار تکرار و دوازده جوجه در هر تکرار به اجرا درآمد. تیمارها شامل: 1) شاهد حاوی میزان استاندارد اکسید روی (100 میلی‌گرم در کیلوگرم)، 2) شاهد + 100 میلی‌گرم در کیلوگرم ریزاندامگان سلامت‌بخش، 3 و 4) جیرۀ پایه به اضافه 25 و 50 میلی‌گرم در کیلوگرم نانو اکسید روی، 5 و6) جیرۀ پایه به اضافه 25 و 50 میلی‌گرم در کیلوگرم نانو ‌اکسید روی و 100 میلی­گرم ریزاندامگان سلامت‌بخش، بودند. درکل دورۀ آزمایش استفاده از نانو‌اکسید روی با ریزاندامگان سلامت‌بخش سبب افزایش وزن بدن و بهبود ضریب تبدیل غذایی جوجه‌های گوشتی در مقایسه با تیمار شاهد شد (05/0P <). شمار باکتری‌های کلی فرم و لاکتوباسیل روده در جوجه‌های تغذیه‌شده با 50 میلی‌گرم در کیلوگرم نانو‌اکسید روی به همراه ریزاندامگان سلامت‌بخش به ترتیب کمتر و بیشتر از جوجه‌های مربوط به گروه شاهد بودند (05/0P <). میزان پروتئین کل و آلبومین سرم در جوجه‌های تغذیه‌شده با 50 میلی‌گرم در کیلوگرم نانو ‌اکسید روی به همراه ریزاندامگان سلامت‌بخش از جوجه‌های مربوط به تیمار شاهد بیشتر بود (05/0P <). به‌طورکلی استفاده از نانو‌ذرات اکسید روی به همراه ریزاندامگان سلامت‌بخش سبب بهبود عملکرد و تعدیل جمعیت میکروبی ‌شد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of zinc oxid nanoparticle and Bacillus coagulans on performance, microbial population and blood parameters in broiler chickens

نویسندگان [English]

  • Mohammad Khajeh Bami 1
  • Mohsen Afsharmanesh 2
1 M. Sc. Student, Department of Animal Science, Shahid Bahonar University of Kerman, Iran
2 Associate Professor, Department of Animal Science, Shahid Bahonar University of Kerman, Iran
چکیده [English]

This experiment was conducted to study the effect of zinc oxid nanoparticle and probiotic on performance, microbial population and blood parameters in broiler chickens (Ross 308). The experimental was done in a completely randomized design with 6 treatments, 4 replications and 12 chickens in each replication (288 chicks). The experimental treatments were 1) control diet with standard zinc oxid (100 mg/kg) 2) control diet plus 100 mg/kg probiotic, 3,4) basal diet plus 25 and 50 mg/kg zinc oxid nanoparticle, 5,6) basal diet plus 25 and 50 mg/kg zinc oxid nanoparticle plus probiotic. In the whole of experimental period, the using zinc oxid nanoparticle with probiotic significantly improved body weight and FCR compare to control group (P<0.05). The colony counts of coliform and lactobacillus bacteria in chickens fed with 50 mg/kg zinc oxid nanoparticle along with probiotic were significantly lower and higher than control group respectivily (P<0.05). Total protein and albumin in serum of chickens which received 50 mg/kg zinc oxid nanoparticle along with probiotic were significantly higher compare to control (P<0.05). In conclusion, zinc oxid nanoparticle with probiotic caused an improvement in performance parameters and count of benefit microbial bacteria.

کلیدواژه‌ها [English]

  • broiler chicks
  • Immunity
  • Intestinal microflora
  • Probiotic
  • Zinc
  1. Ahmadi, F., Ebrahimnezhad, Y., Maheri, S. N. & Ghiasi, G. J. (2013). The effects of zinc oxide nanoparticles on performance, digestive organs and serum lipid concentrations in broiler chickens during starter period. International Journal of Biosciences, 3(7), 23-29.
  2. Alex, T. H., Shu-Yuaan, L., Tsung-Yu, Y., Chun-Kuang, C., Hsun-Cheng, L., Jin-Jenn, L., Bo, W., Shi-Yi, C. & Tu-Fa, L. (2012).Effects of Bacillus coagulans ATCC 7050 on growth performance, intestinal morphology, and microflora composition in broiler chickens. Animal Production Science, 52, 874-879.
  3. Apata, D. F. (2008). Growth performance, nutrient digestibility and immune response of broiler chicks fed diets supplemented with a culture of Lactobacillus bulgaricus. Journal Science Food, Agriculture, 88, 1253-1258.
  4. Beski, S. S. M. & Al-Sardary, S. Y. T. (2015).Effects of Dietary Supplementation of Probiotic and Synbiotic on Broiler Chickens Hematology and Intestinal Integrity. International Journal of Poultry Science, 14(1), 31-36.
  5. Chen, C. Y., Tsen, H. Y., Lin, C. L., Yu, B. & Chen, C. S. (2012). Oral administration of a combination of select lactic acid bacteria strains to reduce the Salmonella invasion and inflammation of broiler chicks. Poultry Science, 91, 2139-2147.
  6. Uyanik, F., Eren, M. & Tuncoku, G. (2001). Effects of supplemental zinc on growth, serum glucose, cholesterol, enzymes and minerals in broilers. Pakistan Journal of Biological Science, 4, 745-747.
  7. De Clerk, E., Rodriguez-Diaz, M., Forsyth, G., Lebbe, L., Logan, N. A. & DeVos, P. (2004). Polyphasic characterization of Bacillus coagulans strains, illustrating heterogeneity within the species, and emended description of the species. System Appl Microbiol, 27, 50-60.
  8. De Neve, L., Fargallo, J. A., Vergara, P. J., Lemus, A. M., Jaren, G. & Luaces, L. (2008). Effects of maternal carotenoid availability in relation to sex, parasite infection and health status of nestling kestrels (Falco tinnunculus). Journal of Experimental Biology, 211, 1414-1425.
  9. Fajardo, P., Pastrana, L., Mendez, J., Rodrigues, I., Fucinos, C. & guerra, P.N. (2012). Effects of feeding of two potentially probiotic preparations from lactic acid bacteria on the performance and faecal microflora of broiler chickens. Scintific world journul, Article ID, 562635, 99.
  10. Feng, J., Ma, W. Q., Niu, H. H., Wu, X. M. & Wang, Y. (2010) Effects of zinc glycine chelate on growth, hematological, and immunological characteristics in broilers. Biological Trace Element Research, 133, 203-211.
  11. Francisco, H. S., Facundo, J. R., Diana, C. P., Fidel, M. G, Alberto, E. M., Amaury, D. J. P. G., Humberto, T. P. & Gabriel, M. C. (2008). The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide and gold. Nanomedicine: Nanotechnology, Biology and Medicine, 4, 237-240.
  12. Gropper, S. J. Smith & Groff, J. (2008). Advanced nutrition and human metabolism. 15th ed. Medical. P: 600.
  13. Hazim, J. & Mahmood, H. M. (2011). Effect of dietary zinc on certain blood traits of broiler breeder chickens. International Journal of Poultry Science, 10, 807-813.
  14. Hu, C.H., Qian, Z.C., Song, J., Luan, Z.S. & Zuo, A.Y. (2013).Effects of zinc oxide-montmorillonite hybrid on growth performance, intestinal structure and function of broiler chicken. Poultry Science, 92, 143-150.
  15. Huang, Y. L., Lu, L., Luo, G. X. & Liu, B. (2007). An optimal dietary zinc level of broiler chicks fed a corn-soybean meal diet. Poultry Science, 86, 2582 - 2589.
  16. Jeong, J. S. & Kim, I. H. (2014). Effect of Bacillus subtilis C-3102 spores as a probiotic feed supplement on growth performance, noxious gas emission, and i in broilers. Poultry Science, 93, 3097-3103.
  17. Karamouz, H., Shahryar, H. A., Gorbani, A., Maheri-Sis, N. & Ghaleh-Kandi, J. G. (2010). Effect of zinc oxide supplementation on some serum biochemical values in male broilers. Global Veterinary, 4(2), 108-111.
  18. Li, Y. L. (1991). Culture Medium Manual (Changchun, China, Jilin Science and Technology Press).
  19. Mehri, M., Zare, A. & Samie, A. (2005). Effect of probiotic and whey powder on performance of broilers. The Initial congress of Animal Science and Aquaculture, 455-452. (in Farsi)
  20. Mountzouris, K. C., Tsitrsikos, P., Palamidi, I., Arvaniti, A., Mohnl, M., Schatzmayr, G. & Fegeros, K. (2010). Effects of probiotic inclusion levels in broiler nutrition on growth performance, nutrient digestibility, plasma immunoglobulins, and cecal microflora composition. Poultry Science, 89, 58-67.
  21. Nagaveni, G., Sivalingam, M. S. & Giridharmadras, H. (2004). Photocatalytic degradetion of organic compounds over combustion-synthesized nano-TiO2. Environ. Science Technology, 38, 9-14.
  22. Park, J. H. & Kim, I. H. (2014). Supplemental effect of probiotic Bacillus subtilis B2A on productivity, organ weight, intestinal Salmonellamicroflora, and breast meat quality of growing broiler chicks. Poultry Science, 93, 2054-2059.
  23. Park, S. Y., Birkhold, S. G., Kubena, L. F., Nisbet, D. J. & Ricke, S. C. (2004). Review on the role of dietary Zinc in poultry nutrition, immunity and reproduction. Biological Trace Element Research, 101, 147-163.
  24. Patterson, J. A. & Burkholder, K. M. (2003). Application of prebiotics and probiotics in poultry production. Poultry Science, 82, 627-631.
  25. Piray, A. H. & Kermanshahi, H. (2008). Effects of diet supplementation of Aspergillus meal prebiotic on efficiency, serum lipids and Immunity responses of broiler chickens. Journal of Biomedical Science, 4, 818-821.
  26. Rajendran, D. (2013). Application of Nano minerals in animal production system. Research Journal of Biotechnology, 8, 1-3.
  27. Roselli, M., Finamore, A., Garaguso, I., Britti, M. S. & Mengheri, E. (2003). Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. Journal Nutrition, 133, 4077-4082.
  28. Rossi, P., Rutz, F., Anciuti, M.A., Rech, J.L. & Zauk, N.H.F. (2007). Influence of graded levels of organic zinc on growth performance and carcass traits of broilers. Journal of Applied Poultry Research, 16, 219-225.
  29. Sahin, K., Sahin, N., Kucuk, O., Hayirli, A. & Prasad, A. S. (2009). Role of dietary zinc in heat-stressed poultry. International Journal of Poultry Science, 88, 2176-2183.
  30. Sahraei, M. & Janmohammadi, H. (2014). Effect of dietary supplementation by synbiotic and different zinc sources on broiler chicken performance, immune system and intestinal morphology. Journal of Veterinary Research, 69(3), 271-282. (in Farsi)
  31. Salabi, F., Bujarpoor, Fayazi, M., salari, J. S. & Nazari, M. (2011). Effects of different levels of zinc on the performance and carcass characteristics of broiler reared under heat stress condition. Journal of Animal and Veterinary Advances, 10, 1332-1335.
  32. Sarvari, B. G., Seyedi, A. H., Shahryar, H. A., Sarikhan, M. I. & Ghavidel, S. Z. (2015). Effects of Dietary Zinc Oxide and a Blend of Organic Acids on Broiler Live Performance, Carcass Traits, and Serum Parameters. Brazilian Journal of Poultry Science, 10.1590/1516-635.
  33. Sawosz, E., Binek, M., Grodzik, M., Zielinska, M., Sysa, P. & Szmidt, M. (2007). Influence of hydrocolloidal silver nanoparticles on gastrointestinal microflora and morphology of enterocytes of quails. Archives of Animal Nutrition, 61, 444- 451.
  34. Scholz-Ahrens, K., Peter, A., Marten, B., Weber, P., Wolfram, T., Yahya, A., Claus, C. G. & Schrezenmeir, J. (2007). Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure. Journal Nutrition, 137, 838S-846S.
  35. Sharideh, H., Zhandi, M., Zaghari, M. & Akhlaghi, A. (2015)Effect of dietary zinc oxide and phytase on the plasma metabolites and enzyme activities in aged broiler breeder hens. Iranian Journal of Veterinary Medicine, 9(4), 263-270.
  36. Sinha, R., Karan, R., Sinha, A. & Khare, S. K. (2011). Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresource Technology, 102, 1516-1520.
  37. Sosnik, A., Carcaboso, A. M., Glisoni, R. J., Moretton, M. A. & Chiappetta, D. A. (2010). New old challenge in tuberculos is: potentially effective nanotechnologies in drug delivery. Advanced Drug Delivery Reviews, 62(4-5), 547-59.
  38. Szabo, A., Mezes, M., Horn, P., Suto, Z., Bazar, G. & Romvari, R. (2005). Developmental dynamics of some blood biochemical parameters in the growing turkey (Meleagris Gallopavo). Acta Veterinaria Hungarica, 53(4), 397-409.
  39. Uyanik, F., Eren, M. & Tuncoku, G. (2010). Effects of supplemental zinc on growth, serum glucose,
  40. Wang, C., Wang, M.Q., Ye, S. S., Tao, W. J. & Du, Y. J. (2011). Effects of copper-loaded chitosan nanoparticles on growth and immunity in broilers. Poultry Science, 90, 2223-2228.
  41. Zaghari, M., Avazkhanllo, M. & Ganjkhanlou, M. (2015). Reevaluation of Male Broiler Zinc Requirement by Dose-Response Trial Using Practical Diet with Added Exogenous Phytase. Journal of Agricultural Science Technology, 17, 333-343.
  42. Zhou, X. & Wang, Y. (2011). Influence of dietary nano elemental selenium on growth performance, tissue selenium distribution, meat quality, and glutathione peroxidase activity in Guangxi Yellow chicken. Poultry Science, 90, 680-686.