8954856055505db

مقایسة رهیافت بیزی مرسوم و رهیافت بیزی تقریبی در برآورد مؤلفه‌های واریانس مدل‌های حیوانی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، گروه آمار، دانشکدة ریاضی، آمار و علوم کامپیوتر، دانشگاه سمنان، ایران

2 دانشجوی سابق کارشناسی ارشد، گروه آمار، دانشکدة ریاضی، آمار و علوم کامپیوتر، دانشگاه سمنان، ایران

چکیده

مدل­های حیوانی برای مدل­بندی مشاهده‌های مربوط به عملکرد حیوان با همبستگی ژنتیکی استفاده می­شوند. این مدل­ها متعلق به کلاس مدل­های مختلط خطی تعمیم­یافته هستند و همبستگی ژنتیکی موجود بین داده­ها توسط تأثیر تصادفی با ارزش اصلاحی به مدل اضافه می­شود. از جمله هدف‌های این مدل­ها، برآورد مؤلفه­های واریانس است. در این پژوهش رهیافت بیزی تقریبی برای برآورد مؤلفه‌های واریانس مدل حیوانی ارائه و با رهیافت بیزی مرسوم مقایسه شد. برای این منظور مجموعة داده‌ شبیه­سازی‌شده با 1084 رکورد مربوط به حیوان فرضی استفاده شد. مشاهده‌های وزن حیوان هنگام تولد است. این مجموعة داده شامل کد حیوان، کد مادر، کد پدر، جنسیت و سال تولد است. جنسیت به‌عنوان اثر ثابت و اثرهای مادری، حیوان و سال تولد به‌صورت عامل‌های تصادفی در نظر گرفته شدند. چهار مدل با رهیافت بیزی مرسوم برازش و با یک معیار مدل­گزینی مدل مناسب انتخاب شد. رهیافت بیزی تقریبی روی مدل مناسب پیاده­سازی شد. زمان محاسبات با رایانه به ویژگی‌های (Intel Core i7, 4GB, 2.7 GHz) برای رهیافت بیزی مرسوم حدود ١٢٠ ثانیه و با رهیافت بیزی تقریبی کمتر از ١٠ ثانیه به طول انجامید. برای بررسی نکویی برازش معیار ریشة میانگین توان دوم خطای نسبی محاسبه شد که به ترتیب 1568/0 و 1499/0  برای رهیافت بیزی مرسوم و بیزی تقریبی به دست آمد. برای بررسی تفاوت نداشتن معنی­دار بین برازش وزن حیوان توسط دو رهیافت، آزمون تی ‌(T) استفاده شد که میزان احتمال آزمون 98/0 به دست آمد و فرضیه صفر برابر بودن میانگین برازش وزن حیوان از دو رهیافت برابرند، پذیرفته شد.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of conventional bayesian and approximate bayesian approaches in estimation of variance components using animal models

نویسندگان [English]

  • Fatemeh Hosseini 1
  • Omid Karimi 1
  • Niloofar Javaheri 2
1 Assistant Professor, Department of Statistics, Faculty of Mathematics, Statistics and Computer Science, Semnan University, Semnan, Iran
2 Former M.Sc. Student, Department of Statistics, Faculty of Mathematics, Statistics and Computer Science, Semnan University, Semnan, Iran
چکیده [English]

Animal models are used to model the observations of animal performance that are genetically dependent.These models are considered as generalized linear mixed models and the genetic correlation structure of data is considered through random effects of breeding values. One goal of the mentioned models is to estimate variance components. In this research, an approximate Bayesian approach presented to estimate variance components in animal model and compared with the conventional Bayesian approach. A generated data set for hypothetical animal population with 1084 records was used. The observations are the animal's birth weight and the data includes dam ID, sire ID, sex and birth year. The effect of gender was considered as fixed effect and the effects of dam, animal and year of birth were used as random effect. Four different models were fitted by the conventional Bayesian approach and the appropriate model was selected by deviance information criteria. The approximate Bayesian approach was applied on it. Time consuming with a PC with configuration (Intel Core i7, 4GB, 2.7 GHz) was about 120 second for the conventional Bayesian approach and little than 10 second for the approximate Bayesian approach. Goodness of fit was computed by relative root mean squared error of prediction that was respectively 0.1568 and 0.1499 for conventional Bayesian and the approximate Bayesian approaches. T-test was used to illustrate lack of significant different to fit weight of animals between two approaches. The null hypothesis was accepted with p-value 0.98 that it shows mean of fitted animal weights for two approaches are equal.

کلیدواژه‌ها [English]

  • Animal model
  • approximate bayesian approach
  • Breeding value
  • heritability
  1. Bohlouli, M. & Alijani, S. (2012). Genotype by environment interaction for milk production traits in Iranian Holstein dairy cattle using random regression model. Livestock Research for Rural Development, 24, 1-7.
  2. Bolker, B. M., Brooks, C. J., Clark, S. W., Geange, J. R. &  Poulsen et al. (2009). Generalized linear mixed models: a practical guide for ecology and evolution, Trends in ecology & evolution, 24, 127-135.
  3. Cobuci JA, Costa CN, Neto JB & Freitas AF, (2011(. Genetic parameters for milk production by using random regression models with different alternatives of fixed regression modeling. Revist Brasileira de Zootecnia, 40, 557-567.
  4. Eidsvik, J., Martino, S. & Rue, H. (2009). Approximate Bayesian Inference in Spatial Generalized Linear Mixed Models‎, Scandinavian Journal of Statistics, 36, 1-22.
  5. Fong, Y., Rue, H., & Wakefield, J. (2010). Bayesian inference for generalized linear mixed models. Bio- statistics, 11, 397-412
  6. Hadfield, J. D. (2010). MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package, Journal of Statistical Software, 33(2), 1-22.
  7. Holand, A. M., Steinsland, I., Martino, S. & Jensen, H. (2013). Animal Models and Integrated Nested Laplace Approximations, G3- Genes Genom Genet, 3, 1241-1251.
  8. Hosseini, F., ‎Eidsvik, J. & Mohammadzadeh‎, M. (2011). ‎Approximate Bayesian Inference in Spatial GLMM with Skew Normal‎ Latent Variables, ‎Computational Statistics and Data Analysis‎, 55, ‎1791-1806‎.
  9. Hosseini, F. (2016). A new algorithm for estimating the parameters of the spatial generalized linear mixed models, Environmental and Ecological Statistic, Online publication. doi: 10.1007/s10651-015-0335-6.
  10. Jamrozika, J., Gianolab, D. & Schaeffera, L. R. (2001). Bayesian estimation of genetic parameters for test day records in dairy cattle using linear hierarchical models, Livestock Production Science, 71, 223-240
  11. Jasouri, M., Alijani, S., Talebi, R. & Hasanzadeh, A. (2014). Influence of maternal effects on estimation of genetic parameters of growth traits in Ghezel sheep using bayesian via Gibbs sampling technique, Animal Science Researchs, 34(1), 47-55.
  12. McCulloch, C. (1997). Maximum likelihood algorithm for generalized linear mixed models, journal of the American Statistical Association, 92, 162-170.
  13. McCullagh, P. & Nelder, J. A. (1989). Generalized Linear Models, London, Chapman and Hall.
  14. Moghbeli Damane, M., Ayatollahi Mehrgardi, A., Asadi Fozi, M. & Molaei Moghbeli, S. (2014). Estimation of genetic parameters for production traits and somatic cell score in Iranian Holstein dairy cattle using random regression model, Journal of Livestock Science and Technologies, 2(2), 43-52
  15. Mohammadi, Alijani S, Rafet, S.A., Taghizadeh, A. & Buhloli, M. (2013). Comparison of fitting performance of polynomial functions in random regression model for test day milk yield in of Iranian Holstein dairy cattle, Research on Animal Production, 3(6), 46-63.
  16. Mohammadi, Alijani S., Rafet, S.A. & Taghizadeh, A. (2014). Comparison of fitting performance of random regression animal and sire models for yield traits of Iranian Holstein dairy cattle, Animal Science researches, 23(4), 159-178.
  17. Nelder, J. A. & Wedderburn, R. W. M. (1972). Generalized Linear Mixed Models, Journal of the Royal Statistical Associate, Ser. A, 135, 370-384.
  18. Razmkabir, M., Moradi-Shahre Babak, M., Pakdel, A. & Neati Javaremi, A. (2012). Estimation of genetic parameters for test day records of milk yield in Holstein dairy cattle of Iran, Iranian Journal of Animal Science, 42, 171-178.
  19. Rue, H. & Held, L. (2005). Gaussian Markov Random Fields: Theory and Applications, volume 104 of Monographs on Statistics and Applied Probability. Chapman & Hall, London.
  20. Rue, H‎. & Martino, S. (2007). Approximate Bayesian Inference for Hierarchical Gaussian Markov Random fields models. Journal of Statistical Planning and Inference, 137, 3177-3199.‎
  21. Rue, H., Martino, S. & Chopin, N. (2009). Approximate Bayesian Inference for Latent Gaussian Models using integrated nested Laplace approximations. Journal of the Royal Statistical Society, Series B 71, 319-392.
  22. Schaeffer, LR. & Dekkers, JCM, (1994). Random regressions in animal models for test-day production in dairy cattle. Proc. 5th World Congress of Genetics Applied to Livestock Production, Guelph, Ontario, Canada XVIII, 443-446.
  23. Seraj, A., Vaez Torshizi, R. & Pakdel, A. (2011). Influence of fitting different animal models on genetic parameters of Day-old Chick Weight, Iranian Journal of Animal Science, 41, 363-371.
  24. Simm, G. (1998). Genetic Improvement of Cattle and Sheep, Ipswich, U.K, Farming Press.
  25. Sorensen, D. & Gianola, D. (2002), Likelihood Bayesian and MCMC Methods in Genetics, Springer.
  26. Steinsland, I. & Jensen, H. (2010). Utilizing Gaussian Markov Random Field Properties of Bayesian Animal Models, Biometrics, 66(3), 763-71.
  27. Tempelman, R. J. & Gianola, D. (1994). Assessment of a Poisson animal model for embryo yields in a simulated multiple ovulation-embryo transfer schemes. Genetics selection evolution, 26, 263-290.
  28. Wilson, A. J., Reale, D., Clements, M. N., Morrissey, M. M., Postma, E., Walling, C. A., Kruuk, L. E. B. & Nussey, D. H. (2010). An ecologist’s guide to the animal model. Journal of Animal Ecology, 79, 13-26.