بررسی تنوع ساختاری ژنگان سگ و گرگ بومی ایران با روش توالی‌یابی کل ژنوم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری اصلاح نژاد دام، بخش مهندسی علوم دامی، دانشکدة کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران و عضو انجمن پژوهشگران جوان، دانشگاه شهید باهنر کرمان

2 استاد، بخش مهندسی علوم دامی، دانشکدة کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران

3 دانشیار، بخش مهندسی علوم دامی، دانشکدة کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران

چکیده

در این پژوهش، از سه قلاده سگ و سه قلادة گرگ بومی ایران نمونه­گیری شد. توالی­یابی کل ژنگان (ژنوم) برای هر نمونه سگ و گرگ با استفاده از روش توالی‌یابی نسل جدید انجام شد. داده­ها توسط برنامة BWA با ژنگان مرجع (رفرنس) همردیف شدند. چندریختی‌های تک نوکلئوتیدی و حذف و اضافه­های کوچک ژنگان با برنامة GATK  شناسایی شد­ند. تغییرپذیری (واریانت)­های ساختاری با برنامة  BreakDancer-1.1تعیین شدند. مستندسازی چندریختی­های تک نوکلئوتیدی و حذف و اضافه­های کوچک ژنگان با برنامةSnpEff  انجام شد. مقادیر تنوع نوکلئوتیدی در نمونه­های سگ و گرگ با VCFtools  محاسبه شد­ند. در این پژوهش 12459651 چندریختی تک نوکلئوتیدی به دست آمد که 7819789 و 10454994 به ترتیب مربوط به نمونه‌های سگ و گرگ بودند. از شمار کل چندریختی­های تک نوکلئوتیدی 57/53، 989/31 و 811/0 درصد به ترتیب در ناحیة بین ژنی، اینترون و اگزون قرار گرفتند. نتایج تجزیه‌وتحلیل داده‌ها نشان داد که تنوع ساختاری در ژنگان گرگ بیشتر از سگ است.

کلیدواژه‌ها


عنوان مقاله [English]

Study of structural diversity of genome Iranian native dog and wolf with the method whole genome sequencing

نویسندگان [English]

  • Zeinab Amirighanatsaman 1
  • Ali Esmailizadeh Koshkoiyeh 2
  • Masood Asadi Fozi 3
1 Ph.D. Student of Animal Breeding, Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran and Yang Reseaechers Society, Shahid Bahonar University of Kerman, Kerman, Iran
2 Professor, Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
3 Associat Professor, Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
چکیده [English]

In this research, samples were collected from three Iranian native dogs and three wolves. Whole-genome sequencing for each individual was performed using next-generation sequencing technology. All short reads were aligned to the reference genome using BWA tool. Single-nucleotide polymorphisms (SNPs) and small insertions and deletions (Indels) were detected using the genome analysis toolkit (GATK). Structural variants were predicted using the BreakDancer software. Annotating single-nucleotide polymorphisms and small insertions and deletions was done using SnpEff Software. Nucleotide diversity values in dogs and wolves samples were calculated using VCFtools. In current researche, 12459651 SNPs were detected that 7819789 and 10454994 were for dog and wolf, respectively. Of the total number of Single-nucleotide polymorphisms, 53.57%, 31.989% and 0.811% were located within intergenic, introns and exon regions. The results showed that structural diversity of wolf genome is higher than that in dog.

کلیدواژه‌ها [English]

  • Single-nucleotide polymorphism
  • small insertions and deletions
  • structural variant
  1. Atanur, S. S., Diaz, A. G., Maratou, K., Sarkis, A., Rotival, M., Game, L. & Keane, T. M. (2013). Genome sequencing reveals loci under artificial selection that underlie disease phenotypes in the laboratory rat. Cell, 154(3), 691-703.
  2. Chen, K., Wallis, J. W., McLellan, M. D., Larson, D. E., Kalicki, J. M., Pohl, C. S. & Mardis, E. R. (2009). BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nature methods, 6(9), 677-681.
  3. Cingolani, P., Patel, V. M., Coon, M., Nguyen, T., Land, S. J., Ruden, D. M. & Lu, X. (2012). Using drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, snpsift. In Toxicogenomics in non-mammalian species, (Vol. 3, P. 35). Frontiers E-books.
  4. Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L. & Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, snpeff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly6(2), 80-92.
  5. Collins, D. W. & Jukes, T. H. (1994). Rates of transition and transversion in coding sequences since the human-rodent divergence. Genomics, 20(3), 386-396.
  6. Coppinger, R. & Coppinger, L. (2002). Dogs: a new understanding of canine origin, behavior and evolution. University of Chicago Press.
  7. da Silva, J. M., Giachetto, P. F., da Silva, L. O. C., Cintra, L. C., Paiva, S. R., Caetano, A. R. & Yamagishi, M. E. B. (2015). Genomic variants revealed by invariably missing genotypes in nelore cattle. Plos one, 10(8), e0136035.
  8. Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A. & Durbin, R. (2011). The variant call format and vcftools. Bioinformatics, 27(15), 2156-2158.
  9. Davis, S. J. & Valla, F. R. (1978). Evidence for domestication of the dog 12,000 years ago in the Natufian of Israel. Nature, 276, 608-610.
  10. Ebersberger, I., Metzler, D., Schwarz, C. & Pääbo, S. (2002). Genomewide comparison of DNA sequences between humans and chimpanzees. The American Journal of Human Genetics, 70(6), 1490-1497.
  11. Fang, M., Larson, G., Ribeiro, H. S., Li, N. & Andersson, L. (2009). Contrasting mode of evolution at a coat color locus in wild and domestic pigs. PLoS Genet, 5(1), e1000341.
  12. Freedman, A. H., Gronau, I., Schweizer, R. M., Ortega-Del Vecchyo, D., Han, E., Silva, P. M. & Beale, H. (2014). Genome sequencing highlights the dynamic early history of dogs. PLoS Genetics, 10(1), e1004016.
  13. Hare, B., Wobber, V. & Wrangham, R. (2012). The self-domestication hypothesis: evolution of bonobo psychology is due to selection against aggression.  Animal Behaviour, 83(3), 573-585.
  14. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N. & Durbin, R. (2009). The sequence alignment/map format and sam tools. Bioinformatics, 25(16), 2078-2079.
  15. Li, H. & Durbin, R. (2009). Fast and accurate short read alignment with burrows–wheeler transform. Bioinformatics, 25(14), 1754-1760.
  16. McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A. & DePristo, M. A. (2010). The genome analysis toolkit: a mapreduce frame work for analyzing next-generation dna sequencing data.  Genome research, 20(9), 1297-1303.
  17. McLaren, W., Pritchard, B., Rios, D., Chen, Y., Flicek, P. & Cunningham, F. (2010). Deriving the consequences of genomic variants with the ensembl api and snp effect predictor. Bioinformatics, 26(16), 2069-2070.
  18. Ovodov, N. D., Crockford, S. J., Kuzmin, Y. V., Higham, T. F., Hodgins, G. W. & van der Plicht, J. (2011). A 33,000-year-old incipient dog from the altai mountains of Siberia: evidence of the earliest domestication disrupted by the last glacial maximum. PLoS One, 6 (7), e22821.
  19. Pang, J. F., Kluetsch, C., Zou, X. J., Zhang, A. B., Luo, L. Y., Angleby, H. & Savolainen, P. (2009). MtDNA data indicate a single origin for dogs south of Yangtze river, less than 16,300 years ago, from numerous wolves. Molecular biology and evolution, 26(12), 2849-2864.
  20. Pollinger, J. P., Lohmueller, K. E., Han, E., Parker, H. G., Quignon, P., Degenhardt, J. D. & Wayne, R. K. (2010). Genome-wide snp and haplotype analyses reveal a rich history underlying dog domestication. Nature, 464(7290), 898-902.
  21. Skoglund, P., Götherström, A. & Jakobsson, M. (2011). Estimation of population divergence times from non-overlapping genomic sequences: examples from dogs and wolves. Molecular biology and evolution, 28(4), 1505-1517.
  22. Rubin, C. J., Zody, M. C., Eriksson, J., Meadows, J. R., Sherwood, E., Webster, M. T. & Andersson, L. (2010). Whole-genome resequencing reveals loci under selection during chicken domestication. Nature, 464(7288), 587-591.
  23. Saetre, P., Lindberg, J., Leonard, J. A., Olsson, K., Pettersson, U., Ellegren, H. & Jazin, E. (2004). From wild wolf to domestic dog: gene expression changes in the brain. Molecular Brain Research, 126(2), 198-206.
  24. Stenson, P. D., Ball, E. V., Mort, M., Phillips, A. D., Shiel, J. A., Thomas, N. S. & Cooper, D. N. (2003). Human gene mutation database (HGMD®): update. Human mutation, 21(6), 577-581.
  25. Stothard, P., Choi, J. W., Basu, U., Sumner-Thomson, J. M., Meng, Y., Liao, X. & Moore, S. S. (2011). Whole genome resequencing of black angus and holstein cattle for snp and cnv discovery. BMC genomics, 12(1), 559.
  26. Varki, A. & Altheide, T. K. (2005). Comparing the human and chimpanzee genomes: searching for needles in a haystack. Genome research, 15(12), 1746-1758.
  27. Wang, G. D., Zhai, W., Yang, H. C., Fan, R. X., Cao, X., Zhong, L. & Zhang, Y. P. (2013). The genomics of selection in dogs and the parallel evolution between dogs and humans. Nature communications, 4, 1860.