8954856055505db

تأثیر موننسین و متافیکس بر قابلیت هضم ظاهری موادمغذی، تولید و ترکیب شیر و الگوی اسیدهای چرب شیر گاوهای شیرده هلشتاین

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه علوم دامی، دانشکدۀ کشاورزی، دانشگاه لرستان

2 دانشیار، گروه علوم دامی، دانشکدۀ کشاورزی، دانشگاه لرستان

3 استادیار، گروه علوم دامی، دانشکدۀ کشاورزی، دانشگاه لرستان

4 دانشیار گروه علوم دامی، دانشکدۀ کشاورزی، دانشگاه لرستان

چکیده

به منظور بررسی تأثیر مکمل جیره‌ای موننسین با متافیکس یا بدون متافیکس (ترکیبی از اسیدهای دی کربوکسیلیک آلی مالات و فومارات) بر قابلیت هضم مواد مغذی، تولید و ترکیب شیر و الگوی اسیدهای چرب شیر، از 4 رأس گاو شیرده هلشتاین چند شکم‌زا با میانگین وزنی 12 ± 657 کیلوگرم و روزهای شیردهی  133 ± 41روز در قالب یک طرح مربع لاتین 4×4 استفاده شد. گاوها به‌طور تصادفی به تیمارهای آزمایشی اختصاص داده شدند. تیمارهای آزمایشی شامل جیرۀ پایه بدون افزودنی (به‌عنوان شاهد)، جیرۀ پایه به علاوه 24 میلی‌گرم موننسین در هرکیلوگرم مادۀ خشک، جیرۀ پایه به علاوه 5 گرم متافیکس در هرکیلوگرم مادۀ خشک و جیرۀ پایه به علاوه 24 میلی‌گرم در کیلوگرم موننسین و 5 گرم در کیلوگرم مادۀ خشک متافیکس بودند. افزودن موننسین با متافیکس یا بدون متافیکس به‌طور معناداری مادۀ خشک مصرفی را کاهش و تولید و بازده شیر را افزایش داد (05/0 > P). میانگین درصد چربی، پروتئین، لاکتوز، مواد جامد بدون چربی و کل مواد جامد تحت تأثیر جیره‌های آزمایشی قرار نگرفت. افزودن مکمل موننسین به‌تنهایی یا همراه با متافیکس قابلیت هضم ظاهری پروتئین خام، الیاف نامحلول در شویندۀ خنثی، کربوهیدرات‌های غیرالیافی و مادۀ آلی را به‌طور معناداری کاهش داد (05/0 > P). افزودن موننسین به تنهایی یا همراه با مکمل متافیکس به جیرۀ گاوهای شیری محتوی اسید لینولئیک کونژوگه (سیس-9، ترانس-11( شیر را به طور معنا‌داری افزایش داد (05/0>P). نتایج این تحقیق نشان داد که افزودن مکمل موننسین و متافیکس به جیره‌های گاوهای شیرده در اواسط دورۀ شیردهی باعث افزایش تولید شیر شد ولی تأثیر معنا‌داری بر ترکیبات شیر نداشت. افزودن مکمل موننسین و متافیکس به‌تنهایی یا به صورت مخلوط تأثیری بر ترکیب بیشتر اسیدهای چرب شیر نداشت، ولی محتوی اسید لینولئیک کونژوگه (سیس-9، ترانس-11( چربی شیر در نتیجۀ افزودن موننسین افزایش یافت.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of monensin supplementation alone or in combination with Methafix on nutrient digestibility, milk production and composition of milking Holstein cows

نویسندگان [English]

  • Ahmad Ghasemi 1
  • Arash Azarfar 2
  • Ali Kiani 3
  • Heshmatollah Khosravinia 4
1 M.Sc. Student, Department of Animal Science, Faculty of Agriculture, Lorestan University, Khoram Abad, Iran
2 Associate Professor, Department of Animal Science, Faculty of Agriculture, Lorestan University, Khoram Abad, Iran
3 Assistant Professor , Department of Animal Science, Faculty of Agriculture, Lorestan University, Khoram Abad, Iran
4 Associate Professor, Department of Animal Science, Faculty of Agriculture, Lorestan University, Khoram Abad, Iran
چکیده [English]

This study was conducted to evaluate the effect of supplementing diets of milking cows monensin supplementation alone or in combination with Methafix (a commercial product containing malate and fumarate) on nutrient digestibility, milk production and composition and milk fatty acids profile. Using four multiparous Holstein milking cows (657± 12 kg of live weight; 133 ± 41days in milk) in a Latin square design. The cows were randomly assigned to one of the four dietary treatments. The first treatments was the control diet(C), second was control diet supplemented with 24 mg of monensin/kg of DM (M), the third was control diet supplemented with 5 g of Methafix/kg DM (ME) and the fourth treatment was C diet supplemented with 24 mg of monensin in combination with 5 g of Methafix/kg DM (MM). Dietary supplementation with Monensin alone or in combination with Metafix significantly decreased dry matter intake (P<0.05), while the intake of crude protein (CP), neutral detergent fiber (NDF) and non-fiber carbohydrates (NFC) were not affected. The digestibility of organic matter (OM) and CP were significantly lower in M and MM-fed cows than the other cow (P<0.05). Total tract apparent digestibility of NDF and NFC were lowest in the cows fed with MM diet. Dietary treatments had no effect on fat and energy corrected milk production, milk fat, protein and lactose concentrations, utilization efficiency of N and NEL (P>0.05). Utilization efficiency of dry matter for milk production was higher in monensin and Methafix-supplemented cows than in control cows (P<0.05).  Supplementing milking cow rations with monensin alone or in combination with Methafix significantly (P<0.05) increased milk fat concentration of conjugated linoleic acid (cis9, trans11). In conclusion, the results of this study showed that supplementing mid-lactating cows with monensin or Methafix would increase milk yield, but had no effect on milk components. Dietary supplementation of milking cows with monensin and Methafix alone or together had no effect on majority of milk fatty acids, but elevated milk concentration of conjugated linoleic acid (cis-9, trans 11).    

کلیدواژه‌ها [English]

  • methafix
  • Milk production
  • milk fatty acids profile
  • monensin
  1. Abdi, E., Fatahnia, F., Dehghan Banadaki, M., Azarfar, A. & Khatibjo, A. (2013). Effect of soybeans roasting and monensin on milk production and composition and milk fatty acids profile of lactating dairy cows. Livestock Science, 153, 73-80.
  2. AlZahal, O., Odongo, N. E., Mustvangwa, T., Or-Rashid, M.M., Duffield, T.F., Bagg, R., Dick, P.,         Vessie, G. & McBride, B.W. (2008). Effect of monensin and dietary soybeans oil on milk fat      percentage and milk fatty acid profile in lactating dairy cows. Journal of Dairy Science, 91, 1166-1174.
  3. Association of Official Analytical Chemists. (2000) Official Methods of Analysis. (17th ed.).  AOAC International, Arlington, VA.
  4. Benchaar, C., Petit, H. V., Berthiaume, R., Whyte, T. D. & Chouinard, P. Y. (2006). Effects of addition of essential oils and monensin premix on digestion, ruminal fermentation, milk production, and milk composition in dairy cows. Journal of Dairy Science, 89, 4352-4364.
  5. Bergen, W.G. & Bates, D.B. (1984). Ionophores: their effect on production efficiency mode of action. Journal of Animal Science, 58, 1465-1483.
  6. Bauman, D. E. & Griinari, J. M. (2001). Regulation and nutritional manipula- tion of  milk fat: low-fat syndrome. Livestock Production Science, 70, 15-29.
  7. Baumgard, L.H., Corl, B.A., Dwyer, D.A. & Bauman, D. (2000). Identification of CLA isomer that inhibits milk fat synthesis. American Journal of Physiology, 278, R179-R184.
  8. Canadian Food Inspection Agency. (2011). Compendium of medicating ingredient brochures. Retrieved January 24, 2013, from:http://www.inspection.gc. ca/animals/feeds/medicating-ingredients/mib/mib-57/eng/ 1331053867503/1331053926592S.
  9. Griinari, J. M.,  Corl, B. A., Lacy, S.H.,  Chouinard, P. Y.,  Nurmela, K. V. & Bauman, D. E.,  (2000). Conjugated linoleic acid is synthesized endo- genously in lactating dairy cows by Δ-9 desaturase. Journal of Nutrition, 130, 2285-2291.
  10. Baumgard, L. H., Matitashvili, E., Corl, B. A. & Bauman, D. E. (2002). Trans-10, Cis-12 CLA decreases lipogenic rates and expression of genes involved in milk lipid synthesis in dairy cows. Journal of Dairy Science, 85, 2155-2163.
  11. Castillo, C., Beneditio, J. L., Me´ndez, J., Pereira, V., Lo´ pez-Alonso M., Miranda, M. & Herna´dez. J. (2004). Organic acids as a substitute for monensin in diets for beef cattle. Animal Feed Science and Technology, 115, 101-116.
  12. Carro, M. D. & Ranilla, M. J. (2003). Effect of the addition of malate on in vitro rumen fermentation of cereal grains. British Journal of Nutrition, 89, 181-188.
  13. Duffield, T.F. & Bagg, R.N. (2000). Use of ionophores in lactating dairy cattle: A     review. Canadian Veterinary Journal, 41, 388-394.
  14. da Silva, D. C., Santos, G. T., Branco, A. F., Damasceno, J. C., Kazama, R., Matsushita, M.,  Horst, J. A.,  Dassantos,  W. B. R. &  Petit, H. V. (2007). Production performance and milk composition of dairy cows fed whole or ground flaxseed with or without Monensin. Journal of Dairy Science, 90, 2928-2936.
  15. Fairfield, A. M., Plaizier, J. C., Duffield, T. F., Lindinger, M. I., Bagg, R., Dick, P. & McBride, B. W. (2007). Effects of prepartum administration of a monensin controlled release capsule on rumen pH, feed intake  and  milk production of transition dairy cows. Journal of Dairy Science, 90, 937-945.
  16. Fatahnia, F., Rowghani, E., Hosseini, A. R., Darmani Kohi, H. & Zamiri, M. J. (2010). Effect of different level of monensin in diets containing whole cottonsed on milk production and composition of lactating dairy cows. Iranian Journal of Veterinary Research, 11, 206-213.
  17. Fellner, V., Sauer, F. D. & Kramer, K. G. (1997). Effect of nigercin, monensin, and tetronasin on biohydrogenation in continuous flow-through ruminal fermenters. Journal of Dairy Science, 80, 921-928.
  18. Foley, P.A., Kenny, D.A., Lovett, D.K., Callan, J.J., Boland, T.M. & O'Mara, F.P. (2009). Effect of nigericin, monensin, and tetronasin on biohydrogenation in continuous flow-through ruminal fermenters. Journal of Dairy Science, 92, 3258-3264.
  19. Gehman, A. M., Kononoff, P. J., Mullins, C. R. & Janicek, B. N. (2008). Evaluation of nitrogen utilization and the effects of monensin in dairy cows fed brown midrib corn silage. Journal of Dairy Science, 91, 288-300.
  20. Ghorbani, B., Ghoorch, T., Amanlou, H. & Zerehdaran, S. (2011). Effects of using monensin and different levels of crude protein on milk production, blood metabolites and digestion of dairy cows. Asian-Australasian Journal of Animal Science, 24, 65-72.
  21. Gonzalez-Momita, M. L., Kawas, J. R., Garcia-Castillo, R., Gonzalez-Morteo, C., Aguirre-Ortega, J., Hernandez-Vidal, G., Fimbres-Durazo, H., Picon-Rubio, F. J. & Lu, C. D. (2009). Nutrient intake, digestibility, mastication and ruminal fermentation of Pelibuey lambs fed finishing diets with ionophore (monensin or lasalocid) and sodium malate. Small Ruminant Research, 83, 1-6.
  22. Grainger, C., Auldist, M. J., Clarke, T., Beauchemin, K. A., McGinn, S. M. & Hannah, M. C. (2008). Use of Monensin Controlled-Release Capsules to Reduce Methane Emissions and Improve Milk Production of Dairy Cows Offered Pasture Supplemented with Grain. Journal of Dairy Science, 91, 1159-1165.
  23. Griinari, J.M., Corl, B.A., Lacy, S.H., Chouinard, P.Y., Nurmela, K.V.V. & Bauman, D.E. (2012). Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Δ9-desaturaseJournal of Nutrition, 130, 2285-2291.
  24. Herna´dez. (2004). Organic acids as a substitute for monensin in diets for beef cattle. Animal Feed Science and Technology, 115, 101-116.
  25. Hayes, D. P., Pfeiffer, D. U. & Williamson, N. B. (1996). Effect of intraruminal monensin capsule on reproductive performance and milk production of dairy cows fed pasture. J. Dairy Sci, 79, 1000-1006.
  26. Ipharraguerre, I. & Jimmy Clark, H. (2003). Usefulness of ionophores for lactating dairy cows: a review.Animal Feed Science and Technology, 106, 39-57.
  27. Jenkins, T. C. (1993). Lipid metabolism in the rumen. Journal of Dairy Science, 76, 3851-3863.
  28. Juchem, S. O., Santos, F. A. P., Imaizumi, H., Pires, A. V. & Barnabe, E.  C. (2004). Production and blood parameters of Holstein cows treated prepartum with sodium monensin or propylene glycol. Journal of Dairy Science, 87, 680-689.
  29. Khodamoradi, S.H., Fatahnia, F., Taherpour, K., Pirani, V., Rashidi, L. & Azarfar, A. (2013). Effect f monensin and vitamin E on milk production and composition of lactating dairy cows. Journal of Animal Physiology and Animal Nutrition, 97, 666-674.
  30. Mansbridge, R. J. & Blake, J.S. (1997). Nutritional factors affecting the fatty acid composition of bovine milk. British Journal of Nutrition, 78 (Suppl. 1), S37-S47.
  31. Martin, S. A., Streeter, M. N., Nisbet, D. J., Hill, G. M. & Williams, S. E. (1999). Effects of DL-malate on ruminal metabolism and performance of cattle fed a high-concentrate diet. Journal of Animal Science, 77, 1008-1015.
  32. Martineau, R., Benchaar, C., Petit, H. V., Lapierre, H., Ouellet, D. R., Pellerin, D. & Berthiaume, R. (2007). Effect of lasalosid or monensin supplementation on digestion, ruminal fermentation, blood metabolites, and milk production of lactating dairy cows. Journal of Dairy Science, 90, 5714-5725.
  33. Martinez, C. M., Chung, Y. H., Ishler, V. A., Bailey, K. M. & Varga, G. A. (2009). Effects of dietary forage level and monensin on lactation performance, digestibility and fecal excretion of nutrients, and efficiency of feed nitrogen utilization of Holstein dairy cows. Journal of Dairy Science, 92, 3211-3221.
  34. Mc Geough, E.L., Okiely, P. & Kenny, D.A. (2010). A note on the evaluation of the acid-insoluble ash technique as a method for determining apparent diet digestibility in beef cattle. Irish Journal of Agriculture and Food Research, 49, 159-164.
  35. McGuffey, R.K., Richardson, L.F. & Wilkinson, J.D. (2001). Ionophores for dairy cattle: Current status and future outlook. Journal of Dairy Science, 84, E194-E203.
  36. Mullins, C.R., Mamedova, L.K., Brouk, M.J., Moore, C.E., Green, H.B., Perfield, K.L., Smith, J.F., Harner, J.P. & Bradford, B.J. (2012). Effects of monensin on metabolic parameters, feeding behavior, and productivity of transition dairy cows. Journal of Dairy Science, 95, 1323-1336.
  37. Nagaraja, T.G. (1995) Ionophores and antibiotics in ruminants. In R.J. Wallace, A. Chesson (Eds.), Biotechnology in animal feeding. A. VCH Publishers, New York. pp: 173-204.
  38. National Research Council. (2001). Nutrient Requirements of Dairy Cattle. (7th ed.). Washington, DC: National Academy Press.
  39. National Research Council. (1996). Nutrient Requirements of Beef Cattle. (7th ed.). Washington, DC: National Academy Press.
  40. Neville, M. C. & Picciano, M. F. (1997). Regulation of milk lipid secretion and composition.  Ann. Rev.  Nutr, 17, 159-184.
  41. Odongo, N. E., Or-Rashid, M. M., Bagg, R., Vessie, G., Dick, P., Kebreab, E., France, J. & McBride, B.W. (2007). Long-term effect of feeding monensin on milk fatty acid composition in lactating dairy cows. Journal of Dairy Science, 90, 5126-5133.
  42. O’Mara, F.P., Beauchemin, K.A., Kreuzer, M. & McAllister, T.A. (2008).Reduction of greenhouse gas emissions of ruminants through nutritional strategies. In: Proceedings of British Society of Animal Science, International Conference, Livestock and Global Climate Change. pp 40-43.
  43. Palmquist, D. L. & Beaulieu, A. D. (1993). Feed and animal factors influencing milk fat composition. Journal of Dairy Science, 76, 1753-1771.
  44. Phipps, R. H., Wilkinson, J. I. D., Jonker, L. J., Tarrant, M., Jones, A. K. & Hodge, A. (2000). Effect of monensin on milk production of Holstein-Friesian dairy cows. Journal of Dairy Science, 83, 2789-2794.
  45. Plaizier, J.C., Krause, D.O. Gozho, G.N. & McBride, B.W. (2009). Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences. Veterinary Journal, 176, 21–31.
  46. Qui, X., Estridge, M.L., Firkins, J.L. (2004). Effects of dry matter intake, addition of buffer and source of fat on duodenal flow and concentration of conjugated linoleic acid and trans-11 C18:1 in milk. Journal of Dairy Science, 87, 4278-4286.
  47. Reveneau, C., Karnati, S.K.R., Oelker, E.R. & Firkins, J.L. (2012). Interaction of unsaturated fat or coconut oil with monensin in lactating dairy cows fed 12 times daily. I. Protozoal abundance, nutrient digestibility, and microbial protein flow to the omasum. Journal of Dairy Science, 95, 2046-2060.
  48. Ruiz, R., Albrecht, G. L., Tedeschi, L. O., Jarvis, G., Russell, J. B. & Fox, D. G. (2001). Effect of monensin on the performance and nitrogen utilization of lactating dairy cows consuming fresh forage. Journal of Dairy Science, 84, 1717-1727.
  49. SAS. (2003). User’s Guide: Statistics. Version 9.2 Edition. SAS Inst., Inc., Cary, North Carolina.
  50. Sniffen, C.J., Ballard, C.S., Carter, M.P., Cotanch, K.W., Dann, H.M., Grant, R.J., Mandebvu, P., Suekawa, M. & Martin, S.A. (2006).Effects of malic acid on microbial efficiency and metabolism in continuous culture of rumen contents and on performance of mid-lactation dairy cows. Animal Feed Science and Technology, 127, 13-31.
  51. Tyrrell, H.F. & Reid,J.T. (1965). Prediction of the energy value of cow milk. Journal of Dairy Science, 48, 1215-1223.
  52. Turpeinen, A.M., Mutanen, M., Antti, A., Salminen, I., Basu, S., Palmquist, D.L., Griinari, J.M., 2002. Bioconversion of vaccenic acid to conjugated linoleic acid in humans. American Journal of Clinical Nutrition, 75, 504-510.
  53. Sniffen, C. J., Ballard, C. S., Carter, M. P., Cotanch, K. W.,  Dann, H. M., Grant, R. J., Mandebvu, P., Suekawa, M. & Martin, S.A. (2006). Effects of malic acid on microbial efficiency and metabolism in continuous culture of rumen contents and on performance of mid-lactation dairy cows. Animal Feed Science and Technology, 127, 13-31.
  54. Van Nevel, C. J. & Demeyer, D.I. (1995). Lipolysis and biohydrogenation of soybean oil in the rumen in vitro: inhibition by antimicrobials. Journal of Dairy Science, 78, 2797-2806.
  55. Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583-3597.
  56. Van der werf, J. H. J., Jonker, L., Jonker, J. & Oldenbroek, J. K. (1998). Effect of monensin on milk production by Holsten and Jersey cows. Journal of Dairy Science, 81, 427- 438.
  57. Yu, C.W., Chen, Y.S., Cheng, Y.H., Cheng, Y.S., Yang, C.M. & Chang, C.T. (2010) Effects of fumarate on ruminal ammonia accumulation and fiber digestion in vitro and nutrient utilization in dairy does. Journal of Dairy Science, 93, 701-710.
  58. van Zijderveld, S.M., Fonken, B., Dijkstra, J., Gerrits, W.J.J., Perdok, H.B. Fokkink, W. & Newbold, J.R. (2011). Effects of a combination of feed additives on methane production, diet digestibility, and animal performance in lactating dairy cows. Journal of Dairy Science, 94, 1445-1454.