کارایی گاوداری‌های شیری سنتی: پیامدها و راهکارهای ارتقای آن‌ها در استان مازندران (کاربرد تحلیل پوششی داده‌های فازی)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، اقتصاد کشاورزی پردیس بین‌الملل دانشگاه فردوسی مشهد

2 استاد، اقتصاد کشاورزی پردیس بین‌الملل دانشگاه فردوسی مشهد

چکیده

دامداری‌های سنتی می‌توانند یکی از متولیان اصلی تولید شیر در کشور به شمار روند. با توجه به محدودیت‌های مربوط به تغذیۀ دام و همچنین افزایش قیمت نهاده‌های مورد نیاز دامداران و نبود امکان دسترسی کافی و مناسب به این نهاده‌ها، برنامۀ افزایش کارایی واحدهای دامپروری می‌تواند از بهترین برنامه‌ها در این حوزه باشد که علاوه بر کاهش هزینه‌ها و سودآوری بیشتر، سبب افزایش قدرت رقابتی واحدهای تولیدی نیز می‌شود. با توجه به این مهم در این پژوهش کارایی واحدهای گاوداری شیری سنتی در استان مازندران با استفاده از مدل تحلیل پوششی داده‌های فازی و با استفاده از اطلاعات 64 گله که به روش نمونه‌گیری تصادفی ساده انتخاب شده‌اند، در سال 1393 ارزیابی شده است. نتایج بیانگر متفاوت‌بودن کارایی دامداران به ازای مقادیر مختلف α در گروه‌های سه‌گانۀ اندازۀ دامداری، است. نتایج برآورد مدل نشان داد که کارایی دامداران گروه دوم (بین 6 تا 10 رأس دام) از همه بیشتر و کارایی دامداران گروه اول (کمتر از 6 رأس دام) از همه کمتر است و کارایی دامداران گروه سوم (بیش از 10 رأس دام) در حد متوسط قرار دارد. این نتایج نشان‌دهندۀ استفادۀ بهینه‌تر گروه دوم از نهاده‌های در دسترس، در مقایسه با دو گروه دیگر است. با توجه به اینکه مشکلات مالی دامداران برای استفاده از نهاده‌ها و همچنین قیمت کم شیر از دلایل اصلی عدم کارایی تولید شیر است، اعطای یارانه به شیر تولیدی و نیز خرید تضمینی شیر به برنامه‌ریزان این عرصه پیشنهاد شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Efficiency of traditional dairy farms in Mazandaran province: implications and recommendations for improvement (fuzzy data envelopment analysis)

نویسندگان [English]

  • Sasan Torabi 1
  • Mohammad Ghorbani 2
1 Ph.D. Candidate, Agricultural Economics, International Campus of Ferdowsi University of Mashhad, Mashhad, Iran
2 Professor, Agricultural Economics, International Campus of Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

Traditional dairy farm can be one of the main entities of milk production in the country. Regarding livestock feed limitations and the rise in price and shortage of necessary inputs in Iran, the policy of boosting the efficiency of stock units, could be one of the good policies to reduce the costs, produces more benefits and increases the competitiveness among the units. Taking in to account the importance of this issue, this study attempted to assess the efficiency of Mazandaran traditional dairy farms, using fuzzy data envelopment analysis. The data were collected using interviews and 64 questionnaires with random sampling in 2014. The data indicates the difference of dairy farmer's efficiency for different amounts of α in 3 categories. The results indicated that the efficiency of the second group (from 6 to 10 cattle) is more than the other two groups and the efficiency of the first dairy farm (less than 6 cattle) is less than others and the efficiency of the third group (more than 10 cattle) is average. These results indicate that more efficient use of available inputs in the second group in comparison with the other two groups. Taking into account that financial problems for using inputs and low price of milk are main reasons for non-efficiency of milk production in these farms, allocating subsidies to produced milk and guaranteed purchase of milk is suggested to the planners.

کلیدواژه‌ها [English]

  • Envelopment Analysis
  • fuzzy data
  • Mazandaran
  • non-efficiency
  • traditional dairy farms
  1. Abarghuei, M. J., Rouzbehan, Y., Salem, A. Z. M. & Zamiri, M. J. (2013). Nutrient digestion, ruminal fermentation and performance of dairy cows fed pomegranate peel extract. Livestock Science, 157 (2-3), 452- 461.
  2. Aghakhani, H., Moosavi, F. & Dargahi, H. (2012). Presentation of a mixed approach on data envelopment analysis and the fuzzy logic for performance assessment. The Fourth National Conference on data envelopment analysis, University of Mazandaran, Babolsar. (In Farsi)
  3. Akbari, N., ZahediKeyvan, M. & MonfarediSarvestani, M. (2008). Investigating the efficiency of livestock industry across the country (Approach: envelopment analysis of interval data). Journal of Economic Research, 8(3), 141-160. (In Farsi).
  4. Amini, H., Yazdani, A., Cheezari, A. H. & AlaeeBoroojeni, P. (2010). Assessment of the efficiency of milk producing dairy farms of south Tehran province using Comprehensive data analysis. The Fifth National Conference on New Ideas in Agriculture, Islamic Azad University of Khorasgan, Khorasgan. (In Farsi).
  5. Asmild, M., Leth Hougaard, J. & Kronborg, D. (1998). A method for comparison of efficiency scores: A case study of Danish dairy farms. Department of economic, The Royal Veterinary and Agricultural University, Copenhagen, Denmark.
  6. Azadi, M., Jafarian, M., Farzipoor Saen, R. & Mirhedayatian, S. M. (2014). A new fuzzy DEA model for evaluation of efficiency and effectiveness of suppliers in sustainable supply chain management context. Computers and Operations Research, Available online: http://www.sciencedirect.com/science/article/pii/S0305054814000513.
  7. Babaee, M., Rastegari Poor, F. & SaboohiSabooni, M. (2012). Investigating the efficiency of cucumber greenhouse using the approach of envelopment analysis of interval data. The Journal of Economy and Agriculture Development (Science and food industry), 26 (2), 117-125. (In Farsi).
  8. Candmir, M. & Koyubenbe, N. (2006). Efficiency analysis of dairy farms in the province of Izmir (Turkey): DEA. Journal of Applied Animal Research, 29(1), 61-64.
  9. Cardoso, F. C., LeBlanc, S. J., Murphy, M. R. & Drackley, J. K. (2013). Prepartum nutritional strategy affects reproductive performance in dairy cows. Journal of Dairy Science, 96 (9), 5859- 5871.
  10. Charles, V., Kumar, M. & Kavitha, S. I. (2012). Measuring the efficiency of assembled printed circuit boards with undesirable outputs using data envelopment analysis. International Journal of Production Economics, 136, 194-206.
  11. Charnes, A., Cooper, W.W. & Rhodes E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2, 429-444.
  12. Chen, S. M. (1994). Fuzzy system reliability analysis using fuzzy number arithmetic operations. Fuzzy Sets and Systems, 66, 31-38.
  13. Dourandish, A., Nikookar, A., Hussein Zade, M. & Lavshabi, A. (2013).  Estimation of technical efficiency of multi products of Milk Dairy farms of Northern Khorasan Province (The use of  the equation of stochastic frontier analysis and the equation of the distance stochastic frontier analysis). The Journal of Economy and Agriculture Development, 7(2), 114-122. (In Farsi).
  14. Fare, R. & Grosskopf, S. (2004). Modeling undesirable factors in efficiency evaluation: Comment. European Journal of Operational Research, 157, 242-245.
  15. FAO. (2012).
  16. Farmer, E. R., Tucker, H. A., Dann, H. M., Cotanch, K. W., Mooney, C. S., Lock, A. L. Yagi, K. & Grant, R. J. (2014). Effect of reducing dietary forage in lower starch diets on performance, ruminal characteristics, and nutrient digestibility in lactating Holstein cows. Journal of Dairy Science, Available online 2 July 2014. http://www.sciencedirect.com/science/article/pii/S0022030214004536.
  17. Fathizadeh Galangshi, R., Shadpoor, Gh., Ghorbani, A. & Mahdi Zadeh, M. (2012). The calculation of technical efficiency and the yield in comparison with the Holstein scale of Cattle breeding units in Guilan Province using data envelopment analysis method. The Journal of Iran Livestock Science, 43(4), 521-530
    (In Farsi).
  18. Galanopoulos, K., Aggelopoulos, S. Kamenidou, I. & Mattas, K. (2006). Assessing the effects of managerial and production practices on the efficiency of commercial pig farming. Agricultural Systems, 88, 125-141.
  19. Gelan, A. & Muriithi, B. (2010). Measuring and explaining technical efficiency of dairy farms: A Case Study of Smallholder Farms in East Africa. Conference paper, The 3rd Conference of African Association of Agricultural Economists Africa and the Global Food and Financial Crises, Cape Town, South Africa.
  20. Iran Statistical Center. (2013). Retrieved March 04, 2013, from http://www.farsnews.com/newstext.php
  21. Karegar, S., Ghorbani, G. R., Khorvash, M., Kamalian, E. & Schingoethe, D. J. (2013). Dietary grain source and oil supplement: Feeding behavior and lactational performance of Holstein cows. Livestock Science, 157(1), 162- 172.
  22. Korhonen, P. J. & Luptacik, M. (2004). Eco-efficiency analysis of power plants: An extension of data envelopment analysis. European Journal of Operational Research, 154, 437-446.
  23. Leleu, H. (2013). Shadow pricing of undesirable outputs in nonparametric analysis. European Journal of Operational Research, 231, 474-480.
  24. Liang, L., Li, Y. & Li, S. (2009). Increasing the discriminatory power of DEA in the presence of the undesirable outputs and large dimensionality of data sets with PCA. Expert Systems with Applications, 36, 5895-5899.
  25. Liu, W. B., Meng, W., Li, X. X. & Zhang, D. Q. (2010). DEA models with undesirable inputs and outputs. Annals of Operations Research, 173(1), 177-194.
  26. Mashayekhi, S. & Ordoukhani, M. R. (2013). The productivity of production items in industrial cattle breeding units of Shahriyar city. The Journal of Livestock Science (Research and Development), 98, 28-33. (In Farsi)
  27. Mokhtarpour, A., Naserian, A.A., Tahmasbi, A.M. & Valizadeh, R. (2012). Effect of feeding pistachio by-products silage supplemented with polyethylene glycol and urea on Holstein dairy cows performance in early lactation. Livestock Science, 148 (3), 208- 213. (In Farsi)
  28. Neveu, C., Baurhoo, B. & Mustafa, A. (2014). Effect of feeding extruded flaxseed with different grains on the performance of dairy cows and milk fatty acid profile. Journal of Dairy Science, 97(3), 1543- 1551.
  29. Nikkhah, A., Emadi, B., Khojasteh Poor, M., Peyman, S. H. & HamzehKalankari, H. (2013). Investigating the consumed energy of peanuts in Guilan province using Fuzzy data envelopment analysis method. The Eighth National Conference of Agriculture Machines (Bio system.) and Mechanization, Ferdowsi University of Mashhad, Iran.
  30. Puri, J. & Prasad Yadav, S. (2014). A fuzzy DEA model with undesirable fuzzy outputs and its application to the banking sector in India. Expert Systems with Applications, 41(14), 6419- 6432.
  31. Rafiee, H,.Heidarikhormizi, S. R. & Ganjkhanloo, M. (2011). Investigating the total efficiency of the production items and the calculation of the efficiency. The yield scale on industrial dairy farms for milk production. Case study: Guilan province. The Journal of Agriculture economy research, 3(4), 117-132. (In Farsi)
  32. Ramli, N. A. & Munisamy, S. (2013). Modeling undesirable factors in efficiency measurement using data envelopment analysis: A review. Journal of Sustainability Science and Management, 8(1), 126-135.
  33. SabetanShirazi, A. A., Mohammadi, H. & Rahmati, D. (2010). Calculating the kinds of efficiency in milk Dairy farms of Fars province using DEA method. Journal of Dynami Agriculture, 7(1), 1-9. (In Farsi)
  34. Seiford, L. & Zhu, J. (2002). Modeling undesirable factors in efficiency evaluation.  European Journal of Operational Research, 142(1), 16-20.
  35. Steeneveld, W., Van Knegsel, A. T. M., Remmelink, G. J., Kemp, B., Vernooij, J. C. M. & Hogeveen, H. (2014). Cow characteristics and their association with production performance with different dry period lengths. Journal of Dairy Science, 97(8), 4922-4931.
  36. The organization of Agricultural Jihad of Mazandaran Province. (2013). Livestock products department.
    (In Farsi)
  37. Uzmay, A., Koyubenebe, N. & Armagan, G. (2009). Measurment of efficiency using data envelopment analysis (DEA) and social factors affecting the efficeincy in dairy cattle farms within the province of Izmir, Turkey. Journal Animals, 8, 1110-1115.
  38. Vatankhah, M. & FarajiNaghchi, M. (2013).The analysis of cost-benefit, the economic and biological yield in Holstein cows in ChaharMahal and Bakhtiari province with different levels of milk production. The Journal of Livestock Research, 3(2), 1-9. (In Farsi)
  39. Wang, Y.M., Great banks, R. & Yang, J.B. (2005). Interval efficiency assessment using data envelopment analysis. Fuzzy Sets and Systems, 153(3), 347-370.
  40. Wen, M. & Li, H. (2009). Fuzzy data envelopment analysis (DEA): Model and ranking method. Journal of Computational and Applied Mathematics, 223, 872- 878.
  41. Yang, H. & Pollitt, M. (2009). Incorporating both undesirable outputs and uncontrollable variables into DEA: The performance of Chinese coal-fired plants. European Journal of Operational Research, 197, 1095-1105.
  42. Yari, M., Valizadeh, R., Naserian, A.A., Jonker, A., Azarfar, A. & Yu, P. (2014). Effects of including alfalfa hay cut in the afternoon or morning at three stages of maturity in high concentrate rations on dairy cows performance, diet digestibility and feeding behavior. Animal Feed Science and Technology, 192, 62-72.
  43. You, S. & Yan, H. (2011). A new approach in modelling undesirable output in DEA model. Journal of the Operational Research Society, 62, 2146-2156.
  44. Yusef, S. A. and Malomo, O. (2007). Technical efficiency of poultry egg production in ogun state: a DEA approach. Journal of Poultry Science, 6(9), 622-629.
  45. Zhu, J. (2003). Imprecise data envelopment analysis (IDEA): a review and improvement with an application, European Journal of Operational Research, 144, 513-529.