8954856055505db

تأثیرات اسیدهای چرب غیراشباع بر ابتلا به سندروم آسیت در جوجه‌های گوشتی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار گروه علوم دامی تغذیۀ طیور، دانشکدۀ کشاورزی دانشگاه بوعلی سینا، همدان

2 دانشجوی سابق دکتری تغذیۀ طیور، دانشکدۀ کشاورزی دانشگاه بوعلی سینا، همدان

3 استادیار، دانشگاه ملایر

چکیده

به منظور بررسی اثر اسیدهای چرب غیراشباع بر ابتلا به آسیت، آزمایشی با استفاده از 136 قطعه جوجه خروس با 2 تیمار و 4 تکرار و 17 جوجه در هر تکرار اجرا شد. تیمارها شامل 1. جیرۀ دارای 4 درصد روغن سویا (نسبت اسیدهای چرب امگا 3 به امگا 6 برابر 112/0) و 2. جیره‌ای با 5/5 درصد روغن طیور (نسبت اسیدهای چرب امگا 3 به امگا 6 برابر 201/0) بود. به منظور القای آسیت از بیست‌و‌یکمین روز دمای سالن به 1±15 درجۀ سانتی‌گراد کاهش یافت. در روز بیست‌ویکم و چهل‌وهشتم پرورش از 2 پرنده در هر تکرار خون‌گیری شد. در 42 و 48 روزگی از هر تکرار دو پرنده کشتار شد و بعد از خارج‌کردن قلب، کبد و سرخرگ ششی، نسبت بطن راست به کل بطن‌ها به دست آمد. نتایج نشان داد که جیرۀ حاوی 5/5 درصد روغن طیور ویسکوزیتۀ خون را به‌طور معناداری کاهش داده است (05/0P<) اما مقدار تیروکسین، دمای مقعد و فعالیت آنزیم گلوتامات دهیدروژناز که نشان‌دهندۀ افزایش سرعت متابولیسم است، در تیمار دارای 5/5 درصد روغن طیور افزایش یافت (05/0P<). از طرفی مالون‌دی‌آلدئید به‌عنوان شاخص استرس اکسیداتیو در تیمار دارای 5/5 درصد روغن طیور افزایش یافت (05/0P<). نتایج نشان داد روغن طیور با نسیت بالای اسید چرب امگا 3 به امگا 6 نتوانسته است تلفات ناشی از آسیت را در مقایسه با روغن سویا کاهش دهد.

کلیدواژه‌ها


عنوان مقاله [English]

The effects of polyunsaturated fatty acids on ascites incidence in broiler chickens

نویسندگان [English]

  • Ali Asghar Saki 1
  • Mojtaba Haghighat 2
  • Azam Yousefi 2
  • Milad Manafi 3
1 Associate Professor, Department of Animal Science, Faculty of Agriculture, Bou-Ali Sina University of Hamadan, Hamadan, Iran
2 Former Ph.D. Student, Department of Animal Science, Faculty of Agriculture, Bou-Ali Sina University of Hamadan, Hamadan, Iran
3 Assistant Professor, Univercity of Malayer
چکیده [English]

In order to evaluate the effect of polyunsaturated fatty acids on ascites incidence using this experiment was conducted 136 male one day (chicken Ross 308) in a completely randomized design with 2 treatments and 4 replication and 17 chickens in each replicate. Treatments includes: diet contain 4 % soybean oil (n3:n6:0.112) and diet include 5.5% poultry oil (n3:n6:0.201). Birds were raised up to 48 days of age and exposed to a cool temperature (15±1°C) from day 21 thereafter. Blood samples (2 mL) were obtained from the wing vein at 21 and 48 days of age. At 21 and 48 days of age, 2 birds in each replication were slaughtered and the hearts, Liver and pulmonary artery were removed and dissected to measure right ventricular hypertrophy. The results have shown diet with 5.5% poultry oil significantly decreased blood viscosity (P<0.05). However concentration of thyroxin, rectal temperature and glutamate dehydrogenase activity were also significantly increased in this treatment (P<0.05). Malondialdehyde as an oxidative stress index significantly increased by diet contain 5.5% poultry oil. Based on results of this research it can be concluded that high ratio of n3:n6 in poultry oil couldn’t decrease ascites mortality as compare with soybean oil.

کلیدواژه‌ها [English]

  • acites
  • broiler
  • Malondialdehyde
  • N3 fatty acids
  • N6 fatty acids
  • oxidative stress
1. Baião N.C., & Lara LJC. (2005). Oil and fat in broiler nutrition. Revista Brasileira de Ciência Avícola, 7(3), 129-141.

2. Bautista Ortega J. (2008). Polyunsaturated fatty acid metabolism in broiler chickens: effects of maternal diet Msc dissertation. Oregon State University

3. Bowen O. T., Erf, G. F., Chapman M. E., & Wideman, R. F. (2007). Plasma Nitric Oxide Concentrations in Broilers After Intravenous Injections of Lipopolysaccharide or Microparticles. Poultry Science, 86(12),

4. Chapman M. E., & Wideman Jr, R. F. (2006). Evaluation of total plasma nitric oxide concentrations in broilers infused intravenously with sodium nitrite, lipopolysaccharide, aminoguanidine, and sodium nitroprusside. Poultry Science, 85(2), 312-320.

5. Chapman M. E., & Wideman R. F. (2006) . Evaluation of total plasma nitric oxide concentrations in broilers infused intravenously with sodium nitrite, lipopolysaccharide, aminoguanidine, and sodium nitroprusside. Poultry Science, 85(2), 312-320.

6. Cherian G. (2007). Metabolic and Cardiovascular Diseases in Poultry: Role of Dietary Lipids. Poultry Science, 86(5), 1012-1016.

7. Cherian G., & Sim J. (1992). Omega-3 fatty acid and cholesterol content of newly hatched chicks from α-linolenic acid enriched eggs. Lipids, 27(9), 706-710.

8. Cherian G., Wolfe F. W. & Sim J. S. (1996). Dietary oils with added tocopherols: effects on egg or tissue tocopherols, fatty acids, and oxidative stability. Poultry Science, 75(3), 423-431.

9. Fantel A. G. (1996). Reactive oxygen species in developmental toxicity: review and hypothesis. Teratology, 53(3), 196-217.

10. Gross W. B., & Siegel H. S. (1983). Evaluation of the heterophil/lymphocyte ratio as a measure of stress in chickens. Avian Diseases, 972-979.

11. Halliwell B. (1987). Oxidants and human disease: some new concepts. The FASEB Journal, 1(5), 358-364.

12. Iqbal M., Cawthon D., Beers K., Wideman RF, & Bottje W. G. (2002). Antioxidant enzyme activities and mitochondrial fatty acids in pulmonary hypertension syndrome (PHS) in broilers. Poultry Science, 81(2), 252-260.

13. Julian R. J. (1993). Ascites in poultry. Avian Pathology, 22(3), 419-454.

14. Julian R. J. (2007). The response of the heart and pulmonary arteries to hypoxia, pressure, and volume. A short review. Poultry Science, 86(5), 1006-1011.

15. Khajali F., Raei A., Aghaei A., & Qujeq D. (2010). Evaluation of a Dietary Organic Selenium Supplement at Different Dietary Protein Concentrations on Growth Performance, Body Composition and Antioxidative Status of Broilers Reared under Heat Stress. Asian-australasian journal of animal sciences, 23(4), 501-507.

16. Khajali F., Tahmasebi M., Hassanpour H., Akbari M. R., Qujeq D., & Wideman, R. F. (2011). Effects of supplementation of canola meal-based diets with arginine on performance, plasma nitric oxide, and carcass characteristics of broiler chickens grown at high altitude. Poultry Science, 90(10), 2287-2294.

17. Khajali F., & Widman, R. F. (2010). Dietary arginine: metabolic, environmental, immunological and physiological interrelationships. World's Poultry Science Journal, 66(04), 751-766.

18. Kocamis H., Yeni Y. N, Brown C. U., Kenney P. B., Kirkpatrick-Keller D. C., & Killefer J. (2000). Effect of in ovo administration of insulin-like growth factor-I on composition and mechanical properties of chicken bone. Poultry Science, 79(9), 1345-1350.

19. Krautmann B. A., Hauge S. M., Mertz E. T. & Carrick, C. W. (1957). The Arginine Level for Chicks as Influenced by Ingredients. Poultry Science, 36(5), 935-939.

20. Kris-Etherton Penny M., Harris William S., Appel Lawrence J., & Committee, for the Nutrition. (2003). Fish Consumption, Fish Oil, Omega-3 Fatty Acids, and Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(2), e20-e30.

21. Lax Daniela Holman Ralph T., Johnson Susan B., Zhang Shu-Lun L., Ying Noren George R, &. Einzig, S.. (1994). Myocardial lipid composition in turkeys with dilated cardiomyopathy. Cardiovascular Research, 28(3), 407-413.

22. Leaf A., Kang Jing X., Xiao, Y. & Billman George E. (2003). Clinical Prevention of Sudden Cardiac Death by n-3 Polyunsaturated Fatty Acids and Mechanism of Prevention of Arrhythmias by n-3 Fish Oils. Circulation, 107(21), 2646-2652.

23. Lee K. H., Olomu, J. M., & Sim J. S. (1991). Live performance, carcass yield, protein and energy retention of broiler chickens fed canola and flax full-fat seeds and the restored mixtures of meal and oil. Canadian journal of animal science, 71(3), 897-903.

24. Maxwell M. H., Alexander I. A., Robertson G. W., Mitchell M. A., & McCorquodale C. C. (1995). Identification of tissue hypoxia in the livers of ascitic and hypoxia‐induced broilers using trypan blue. British Poultry Science, 36(5), 791-798.

25. Min Y., & Crawford M. A. (2004). Essential fatty acids. The Eicosanoids, 257-265.

26. Nair Sudheera S . D., Leitch James W., Falconer J, & Garg, M. (1997). Prevention of Cardiac Arrhythmia by Dietary (n-3) Polyunsaturated Fatty Acids and Their Mechanism of Action. The Journal of Nutrition, 127(3), 383-393.

27. Nesheim M. C. (1968). Kidney Arginase Activity and Lysine Tolerance in Strains of Chickens Selected for a High or Low Requirement of Arginine. The Journal of Nutrition, 95(1), 79-87.

28. Pavlidis H. O., Balog J. M., Stamps L. K., Hughes J. R., Huff W. E., & Anthony N. B. (2007). Divergent selection for ascites incidence in chickens. Poultry Science, 86(12), 2517-2529.

29. Rahimi S., Azad S. K., & Torshizi M. A. K. (2011). Omega-3 enrichment of broiler meat by using two oil seeds. Journal of Agricultural Scienc and Technology, 13, 353-365.

30. SAS, 2008. Release 9.2. SAS Institute Inc., Cary, North Carolia, USA.

31. Walton J. P., Bond J. M., Julian, R. J., & Squires E. J. (1999). Effect of dietary flax oil and hypobaric hypoxia on pulmonary hypertension and haematological variables in broiler chickens. British Poultry Science, 40(3), 385-391.

32. Wideman F, Erf G. F, & Chapman M. E. (2001). Intravenous endotoxin triggers pulmonary vasoconstriction and pulmonary hypertension in broiler chickens. Poultry Science, 80(5), 647-655.

33. Wideman Jr, R. F., & Hamal Krishna R. (2011). Idiopathic pulmonary arterial hypertension: An avian model for plexogenic arteriopathy and serotonergic vasoconstriction. Journal of Pharmacological and Toxicological Methods, 63(3), 283-295.

34. Wideman R. F., Chapman M. E., Hamal K. R., Bowen O. T., Lorenzoni A. G., Erf G. F., & Anthony, N. B. (2007). An Inadequate Pulmonary Vascular Capacity and Susceptibility to Pulmonary Arterial Hypertension in Broilers. Poultry Science, 86(5), 984-998.

35. Wideman R. F., & Chapman, M. E. (2004). N(omega)-nitro-L-arginine methyl ester (L-NAME) amplifies the pulmonary hypertensive response to endotoxin in broilers. Poultry Science, 83(3), 485-494.