نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشجوی دکتری ژنتیک و اصلاح نژاد، گروه مهندسی علوم دامی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج
2 استاد، گروه مهندسی علوم دامی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج
3 استادیار، گروه مهندسی علوم دامی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
High through put sequencing of single nucleotide polymorphisms (SNP) has revolutionized the fine scale analysis of the population structure in different species. Various methods have been proposed and used for the study of population structure using whole-genome marker data that each has advantages and disadvantages with respect to their characteristics. Super Paramagnetic Clustering (SPC) which is based on data mining was used in this study in order to investigate the population and sub-population structures in simulated populations. The purpose of applying this method was to achieve population structure without using any information from ancestral population. After editing the data, 29209 autosomal markers from 159 animals were analyzed. The results showed that animals are placed properly in their respective population and sub-populations based on their similarities and dissimilarities. The main advantages of this method are the computational efficiency and not requiring any prior assumptions. Therefore, it might be used to analyze the data from thousands of animals without any pedigree and ancestry information to reveal their population structure.
کلیدواژهها [English]