مطالعۀ اثر افزایش شمار نشانگرها بر صحت ارزیابی ژنومی با استفاده از روشrrBLUP

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه علوم دامی، دانشکدۀ کشاورزی، دانشگاه شیراز

2 کارشناس ارشد، گروه علوم دامی، دانشکدۀ کشاورزی، دانشگاه شیراز

چکیده

انتخاب ژنومی، روشی برای پیش‌بینی ارزش‌های اصلاحی، با استفاده از شمار زیادی نشانگر است. هزینۀ فراوان ژنوتیپ‌کردن تعداد زیادی حیوان برای تعداد زیادی نشانگر، کاربرد گستردۀ انتخاب ژنومی را محدود می‌کند. هدف این مطالعه، بررسی اثر استفاده از تراکم کم تا متوسط نشانگرها بر صحت ارزیابی ژنومی با استفاده از مدل rrBLUP بود. صفات با وراثت‌پذیری 10، 20 و 40 درصد شبیه‌سازی شد. ژنوم شبیه‌سازی‌شده دارای25 جفت کروموزوم بدنی، هرکدام با طول یک مورگان بود. شمار نشانگرها روی 25 کروموزوم،12500، 27500 و 50000 نشانگر بود که 125، 250، 500 و 1000 QTL در طول کروموزوم‌ها توزیع تصادفی شدند. میانگین حداقل مربعات صحت برآوردهای ژنومی، بین سطوح متفاوت وراثت‌پذیری و بین تراکم‌های متفاوت نشانگرها، متفاوت بود (P< 0.05). در صفات با وراثت‌پذیری کم (10 درصد)، افزایش تعداد نشانگرها در تراکم‌های کم (250) یا زیاد (1000)QTL بر صحت ارزیابی ژنومی تأثیر نداشت، اما در تراکم‌های متوسط QTL (250 و 500QTL ) صحت ارزیابی ژنومی را افزایش داد. در صفات با وراثت‌پذیری متوسط (20 درصد) افزایش تعداد نشانگرها بر صحت ارزیابی ژنومی تأثیر نداشت. در صفات با وراثت‌پذیری بالا (40 درصد) افزایش تعداد نشانگرها در تراکم‌های کم QTL (125) صحت ارزیابی ژنومی را افزایش داد، اما در تراکم‌های متوسط یا زیاد QTL (250، 500 و 1000) بر صحت ارزیابی ژنومی تأثیر نداشت.

کلیدواژه‌ها


عنوان مقاله [English]

Study of the effect of increasing markers density on the accuracy of genomic evaluation using rrBLUP

نویسندگان [English]

  • Hadi Atashi 1
  • Narjes Gorgani-Firouzjah 2
1 Assistant Professor, Department of Animal Science, Faculty of Agriculture, Shiraz University, Shiraz, Iran
2 Former Graduate Student, Department of Animal Science, Faculty of Agriculture, Shiraz University, Shiraz, Iran
چکیده [English]

Genomic selection is a method to predict the breeding values of individuals using a large number of single nucleotide polymorphism markers. The cost of the high-density marker panel genotyping is very high, which prevents the widely application of genomic selection. The present simulation study was carried out to evaluate the use of low to medium marker density panels to predict direct genomic values. In this study, a trait with heritability of 0.10, 0.20, and 0.40 was simulated. The simulated genome was consisted of 25 outosomes with the same distance (1morgan). Different marker density (12.5, 27.5 and 50 k) and 125, 250, 500 and 1000 random distributed QTL were simulated. The least square means of genomic accuracy varied between the different levels of heritability and the different marker density (P<0.05)­. For low heritable trait (10℅), increasing the markers density had no effect on genomic accuracy with low (125) or high (1000) number of QTL, but did with the moderate number of QTLs (250 and 500 QTLs). The results showed that along with increasing in the number of markers, genomic accuracy was not changed in traits with medium heritability (20℅). For high heritable trait (40℅), increasing the marker density had no effect on genomic accuracy whit the moderate to high QTL density (250, 500 or 1000 QTLs), but but it increased the accuracy with low number of QTLs (125 QTLs).

کلیدواژه‌ها [English]

  • marker density
  • heritability
  • accuracy of genomic estimated breeding value
  1. Calus, M. P. L., Meuwissen, T. H. E., De Roos, A. P. W. & Veerkamp, R. F. (2008). Accuracy of genomic selection using different methods to define haplotypes.Genetics, 178, 553-561.
  2. Daetwyler, H. D., Pong-Wong, R., Villanueva, B., & Woolliams, J. A. (2010). The impact of gnetic architecture on genome-wide evaluation methods.Genetics, 185, 1021-1031.
  3. Dekkers, J. C. M. (2004). Commercial application of marker and gene-assisted selection in livestock: strategies and lessons. Journal of Animal Science, 82, E-Suppl, E313-E328.
  4. Goddard, M. E. (2009). Genomic selection: prediction of accuracy and maximisation of long term response. Genetica, 136, 245-257.
  5. Habier, D., Fernando, R. L., & Dekkers, J. C. M. (2007). The impact of genetic relationship informationon genome-assisted breeding values.Genetics, 177, 2389–2397.
  6. Habier, D., Fernando, R. L., & Dekkers, J. C. M. (2009). Genomic selection using low-density marker panels.Genetics, 182, 343–353.
  7. Hayes, B. J., Bowman, P. J., Chamberlain, A. J., & Goddard, M. E. (2009). Invited review: Genomic selection in dairy cattle: Progress and challenges. Journal of Dairy Science,92, 433-443.
  8. Hill, W. G., & Robertson, A. (1968). Linkage disequilibrium in finite populations. Theoretical and Applied Genetics, 38, 226-231.
  9. Meuwissen, T. H. E. (2009). Accuracy of breeding values of unrelated individuals predicted by dense SNP genotyping. Genetics Selection Evolution, 41, 35.
  10. Meuwissen, T. H. E., Hayes, B. J., & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps.Genetics, 157, 1819-1829.
  11. Meuwissen, T., & Goddard, M. (2010). Accurate prediction of genetic values for complex traits by whole-genome resequencing. Genetics, 185, 623-631.
  12. Muir, W. M. (2007). Comparison of genomicand traditional BLUP-estimated breeding value accuracy and genomic parameters.Journal of Animal Breeding and Genetics, 124, 342-355.
  13. R Development Core Team (2011). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
  14. Saatchi, M., Miraei-Ashtiani, S.R., Nejati-Javaremi, A., Moradi-Shahrebabak, M.,& Mehrabani-Yeghaneh, H. (2010). The impact of information quantity and strength of relationship between training set and validation set on accuracy of genomic estimated breeding values. African Journal of Biotechnology, 9, 438-442.
  15. 15-Sargolzaei, M., & Schenkel, F. S. (2009). QMSim: a large-scale genome simulator for livestock. Bioinformatics, 25, 680-681.
  16. SAS. 2003. User’ s Guide: Statistics, Version 9.1 Edition. Inst., Inc., Cary, NC.
  17. Schaeffer, L. R. (2006). Strategy for applying genome-wide selection in dairy cattle.Journal of Animal Breeding and Genetics, 123, 218-223.
  18. Solberg, T. R., Sonesson, A. K., Woolliams, J. A., & Meuwissen, T. H. E. (2008). Genomic selection using different marker types and densities.Journal of Animal Science, 86: 2447-2454.
  19. VanRaden, P. M., O,Connell, J. R., Wiggans, G. R., & Weigel, K. A. (2011). Genomic evaluations with many more genotypes.Genetics Selection Evolution, 43, 10.
  20. Weigel, K. A., de los Campos, G., Gonzalez-Recio, O., Naya, H., Wu, X. L., Long, N., Rosa, G. J. M., & Gianola, D. (2009). Predictability of direct genomic values for lifetime net merit of Holsteinsires using selected subsets of single nucleotide polymorphism markers.Journal of Dairy Science, 92, 5248-5257.
  21. Zhang, Z., Zhang, Q. & Ding, X. (2011). Advances in genomic selection in domestic animals.Chinese Science Bulletin, 56, 2655-2663.