تأثیر سه نوع برگ گیاه اکالیپتوس بر تخمیرشکمبه‌ای، جمعیت پروتوزوآیی و تولید گاز متان به روش برون‌تنی

نوع مقاله: مقاله پژوهشی


1 دانش‌آموختة دکتری، دانشکدة کشاورزی، دانشگاه تربیت مدرس

2 دانشیار، دانشکدة کشاورزی، دانشگاه تربیت مدرس


در این مطالعه تأثیر سه سطح برگ اکالیپتوس (0، 65/28 و 31/57 میلی‌گرم) که به سه روش هوا، آون و برودت-خشک، خشک شده بودند، بر خصوصیات تخمیر شکمبة گوسفند به روش برون‌تنی و آزمون گاز بررسی شد. مقادیر گاز کل تولیدی و متان تولیدی، نیتروژن آمونیاکی، تجزیه‌پذیری آزمایشگاهی مادة آلی، شاخص بازده سنتز پروتئین میکروبی (PF) (میلی‌گرم مادة آلی تجزیه‌شده بخش بر میلی‌لیتر گاز تولیدی) و غلظت اسیدهای چرب فرار فراسنجه‌هایی بود که مطالعه شد. همچنین سه زیرخانوادة Entodiniinae، Ophryscolecinae، Diplodiniinae و یک خانوادة Isotrichdae و جمعیت پروتوزوآیی کل شناسایی و شمارش شدند. برگ اکالیپتوس تهیه شده به روش‌های هوا - خشک (خطی 01/0>P) و برودت-خشک (غیرخطی 01/0>P) مقدار اسیدهای چرب فرار کل را کاهش داند. اما، تنها روش آون-خشک، اسید پروپیونیک را افزایش (خطی 05/0>P) داد. افزودن برگ اکالیپتوس، فراسنجه‌های گاز تولیدی از بخش نامحلول (01/0>P، خطی)، گاز تولیدی در زمان‌های 24 و 54 ساعت (01/0>P، خطی و غیرخطی)، گاز متانتولیدی (05/0>P، خطی)، نیتروژن آمونیاکی (01/0>P، خطی) و اسیدهای چرب فرار کل را کاهش (01/0>P، خطی) داد. اما شاخص PF‌ تنها درسطح 31/57 برگ اکالیپتوس بهبود یافت (01/0>P، خطی). همچنین، این گیاه دارای فعالیت ضد پروتوزوآیی بوده و سبب کاهش جمعیت پروتوزوآیی کل، زیر خانوادة Entodiniinae (01/0>P، خطی) و خانوادة Isotrichdae (01/0>P، خطی) شد. نتایج این تحقیق نشان می‌دهد که برگ اکالیپتوس توانایی بهبود تخمیر شکمبه‌ای در شرایط برون‌تنی را دارد و روش آون- خشک مؤثرتر از دو روش دیگر بوده است.


عنوان مقاله [English]

The influence of Eucalyptus camaldulensis leaves on in vitro ruminal fermentation, protozoa population and methane production

نویسندگان [English]

  • Mohammad Ebrahim Noorian Soroor 1
  • Yousef Roozbehan 2
1 Ph. D. Graduated, Agriculture College, Tarbiat Modares University, Tehran
2 Associate Professor, Agriculture College, Tarbiat Modares University, Tehran
چکیده [English]

The effect of three levels of eucalyptus leaf (0, 28.65 or 57.37mg/200mg substrate), which were either oven, freeze or air dried on in vitro ruminal fermentation characteristics was assessed. The studied parameters were in vitro gas production (IVGP), methane production, ammonia (NH3-N) concentration, in vitro organic matter degradability, partitioning factor (PF) (ratio of substrate truly degraded to gas volume produced at 24 h of incubation) and total volatile fatty acids (VFAs) concentration. Three subfamily of Entodiniinae, Ophryscolecinae, Diplodiniinae and family of Isotrichdaewere, also, identified and enumerated. Methods of air (L effect; P<0.01) and freeze drying (Q effect; P<0.05) have decreased the concentration of VFAs. However, oven drying method has increased propionic acid concentration (L effect; P<0.01). Adding eucalyptus leaf has significantly decreased gas production from insoluble fraction (b) (L effect; P<0.01), IVGP at 24, 54 h (L and Q effect; P<0.01), methane production (L effect; P<0.05), NH3-N concentration (L effect; P<0.01) and total VFAs (L effect; P<0.01). However, such additive has improved PF (L effect; P<0.01) only at 57.31 level. Moreover, the inclusion of eucalyptus has significantly decreased total protozoa population (P<0.01), Entoodiniinae subfamily (P<0.01) and Isotrichdae family (P<0.05). The results suggest that eucalyptus leaves has positively manipulated in vitro ruminal fermentation, and oven dried method was more effective than two other methods.

کلیدواژه‌ها [English]

  • Eucalyptus camaldulensis
  • gas test
  • methane
  • Ammonia nitrogen
  • Ruminal fermentation
  • sheep
  1. Abravesh, Z., Sefidkon, F. & Assareh. M.H. (2007). Extraction and identification of essential oil components of five Eucalyptus species in warm zones of Iran. Iranian Journal of Medicinal and Aromatic Plants. 23, 323-330. (In Farsi).
  2. Agarwal, N., Kamra, D.N., Chaudhary, L.C. & Patra, A.K. (2006). Effect of Sapindus mukorossi extracts on in vitromethanogenesis and fermentation characteristics in buffalo rumen liquor. Journal Applied Animal Research, 30, 1–4.
  3. Agarwal,N., Shekhar, C., Kumar, R., Chaudhary, L.C. & Kamra, D.N. (2009). Effect of peppermint (Mentha piperita) oil on in vitro methanogenesis and fermentation of feed with buffalo rumen liquor. Animal Feed Science and Technology, 148, 321–327.
  4. Asghari, J. & Mazaheritehrani, M. (2010). Extraction of tannin from Eucalyptus camaldulensis Dehnh. and trimyristin from Myristica fragrans Houtt by using microwave irradiation. Iranian Journal of Medicinal and Aromatic Plants. 26, 185-195.
  5. Association of Official Analytical Chemists (AOAC) (1990). Official Methods of Analysis, 15th ed. Association of Official Analytical Chemists, Arlington, VA, USA.
  6. Bach,A., Calsamiglia, S. & Stern, M. D. (2005). Nitrogen metabolism in the rumen. Journal Dairy Science, 88: (e. suppl.): e9–e21.
  7. Beauchemin, K. A., McGinn, S. M. Martinez, T. F. & McAllister, T. A. (2005). Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle. Journal Animal Science. 85, 1990-1996.
  8. Benchaar, C., Calsamiglia, S., Chaves, A.V., Fraser, G.R., Colombatto, D., McAllister, T.A. & Beauchemin, K.A. (2008). A review of plant-derived essential oils in ruminant nutrition and production. Animal Feed Science and Technology, 145, 209–228.
  9. Benchaar, C. &Greathead, H. (2011). Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Animal Feed Science and Technology, 166– 167, 338– 355.
  10. Blümmel, M., Makkar, H.P.S. & Becker, K. (1997). In vitro gas production: a technique revisited, Journal Animal Physiology and Nutrition, 77, 24–34.
  11. Broderick, G.A.& Kang, J.H. (1980).Automated simultaneous determinations of ammonia and total amino acids in ruminal fluid and in vitro media. Journal Dairy Science, 63, 64–75.
  12. Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods-a review. International Journal of Food Microbiology, 94, 223– 253.
  13. Cottyn, B.G. & Boucque, C.V. (1968). Rapid method for the gas-chromatographic determination of volatile fatty acids in rumen fluid. Journal Agriculture Food Chemistry, 16,105–107.
  14. Dehority, B. A. (2003). Rumen Microbiology. First published. British Library Cataloguing in Publication Data.
  15. Eckard, R.J., Grainger, C. & de Klein. C.A.M. (2010). Options for the abatement of methane and nitrous oxide from ruminant production: A review. Livestock Science, 130, 47–56.
  16. Garc´ıa-Gonz´alez, R., L´opez, S., Fern´, M. & Gonz´alez, J.S. (2008). Dose response effects of Rheum officinale root and Frangula alnus bark on ruminalmethane production in vitro. Animal Feed Science and Technology, 145, 319–334.
  17. Goel, G., Makkar, H. P.S. & Becker, K. (2008). Effects of Sesbania sesban and Carduus pycnocephalus leaves and Fenugreek (Trigonella foenum-graecum L.) seeds and their extracts on partitioning of nutrients from roughage- and concentrate-based feeds to methane. Animal Feed Science and Technology, 147, 72–89.
  18. Hess, H.D., Kreuzer, M., Diaz, T.E., Lascano, C.E., Carulla, J.E., Soliva, C.R. & Machmuller, A. (2003). Saponin rich tropical fruits affect fermentation and methanogenesis in faunted and defaunated rumen fluid. Animal Feed Science and Technology, 109, 79–94.
  19. Hess, H.D., Valencia, F.L., Monsalve, L.M., Lascano, C.E. & Kreuzer, M. (2004). Effects of tannins in Calliandra calothyrsus and supplemental molasses on ruminal fermentation in vitro. Journal of Animal Feed Science and technology. 13 (Suppl. 1), 95–98.
  20. Holter,J.B. & Yong, A.J. (1992). Methane prediction in dry and lactating Holstein cows. Journal Dairy Science, 75, 2165–2175.
  21. Hristov, A.N., Ropp, J.K. Zaman, S. & Melgar, A. (2008). Effects of essential oils on in vitro ruminal fermentation and ammonia release. Animal Feed Science and Technology, 144, 55–64.
  22. Hu, W.L., Liu, J.X., Yr, J.A., Wu,Y.M. & Guo, Y.Q. (2005). Effect of tea saponin on rumen fermentation in vitro. Animal Feed Science and Technology, 120, 333–339.
  23. Hussain, I. & Cheeke, P.R. (1995). Effect of Yucca Scidigera extract on rumen and blood profiles of steers fed concentrate- or roughage-based diets. Animal Feed Science and Technology, 51, 231–242.
  24. Joblin, K.N. (1999). Ruminal acetogens and their potential to lower ruminant methane emissions. Australian. Journal Agriculture Research, 50, 1307–1313.
  25. Janssen, P.H. (2010). Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics.Animal Feed Science and Technology, 160, 1–22.
  26. Johnson, K.A. & Johnson, D.E. (1995). Methane emission from cattle. Journal of Animal Science, 73, 2483-2492.
  27. Makkar, H.P.S. (2010). In Vitro Screening of Feed Resourcesfor Efficiency of Microbial Protein Synthesis (pp. 106-144). In: In Vitro Screening of Plant Resources for Extra-Nutritional Attributes in Ruminants: Nuclear and Related Methodologies (Ed.), New York: Springer.
  28. Mao, H.L., Wang, J.K., Zhou, Y.Y. & Liu, J.X. (2010). Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs. Livestock Science, 129, 56–62.
  29. McIntosh, F.M.,Williams, P., Losa, R.,Wallace, R.J., Beever, D.A. & Newbold, C.J. (2003). Effects of essential oils on ruminal microorganisms and their protein metabolism. Applied Environmental Microbiology, 69, 5011–5014.
  30. Menke, K.H. & Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and invitro gas production using rumen fluid. Animal Research Development, 28, 7–55.
  31. Mirzaei,S., Moeini,M.M., Hozhabri, F.& Nooriyan Soroor,M.E. (2014). The in vitro effects of three medicinal plants on ruminal fermentation parameters and methane reduction. MSc Thesis. Agricultur Faculty. Razi University. Iran. (In Farsi)
  32. Morgavi, D. P., Forano, E., Martin, C. & Newbold, C. J. (2010). Microbial ecosystem and methanogenesis in ruminants. Animal, 4 (7), 1024–1036.
  33. Moss,A.R.,Jouany,J.&Newbold,J. (2000).Methaneproductionbyruminants:itscontributiontoglobalwarming.AnnualZootech, 49,231–253.
  34. National Research Council. (2007). Nutrient Requirments of Small Ruminants. National academy Press, Washington, DC., USA.
  35. Newbold, C.J., Lassalas, B. & Jouany, J.P. (1995). The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro. Letter Applied Microbial, 21, 230–234.
  36. Newbold, C.J., McIntosh, F.M., Williams, P., Riccardo Losa. & Wallace. R.J. (2004). Effects of a specific blend of essential oilcompounds on rumen fermentation. Animal Feed Science and Technology, 114, 105–112.
  37. Nooriyan Soroor, M.E.& Rouzbehan,Y. (2014). The influence of Golpar (Heracleum persicum)on in vitro rumen fermentation parameters and methane production. Iranian journal of Animal Science, 44, 385-395. (In Farsi).
  38. Omidbeygi, M.R. (2010). Medical Plant (First ed) I.R of Iran: Behnashr Press. (In Farsi).
  39. Orskov, E.R. & McDonal, I. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal Agriculture Science, 92, 499–503.
  40. Parissi, Z.M., Papachristou, T.G. & Nastis. A.S. (2005). Effect of drying method on estimated nutritive value of browse species using an in vitro gas production technique. Animal Feed Science and Technology, 123–124,119–128.
  41. Patra, A.K., Kamra, D.N. & Agarwal, N. (2006). Effect of plant extracts on in vitro methanogenesis,enzyme activities and fermentation of feed in rumen liquor of buffalo. Animal Feed Science and Technology, 128, 276–291.
  42. Pen, B. (2007). Studies on Manipulation of Ruminal Fermentation and Methanogenesis by Natural Products. Ph.D. dissertation, Major Chair of Animal Production the United Graduate School of Agricultural Sciences, Iwate University.
  43. Russell, J.B., Strobel, H.J.& Chen, G. (1988). Enrichment and isolation of a ruminal bacterium with a very high specific activity of ammonia production. Applied Environmental Microbiology, 54, 872–877.
  44. Sallam, S.M.A., da Silve Bueno, I.C., Godoy, P.B., Nozella, E.F., Vitti, D.M.S.S.& Abdalla, A.L. (2010).Ruminal fermentation and tannins bioactivity of some browsesusing a semi-automated gas production technique. Trop. Subtrop. Agroecosys. 12, 1.
  45. SPSS. (2009). SPSS Version 18.0 for Windows. SPSS Inc., USA.
  46. Torabi Sagvand, B., Naderi Hadji Bagher Kandi, M. & Sadeghzadeh, L. (2001). Chemical composition and antimicrobial effects of essential oils of ten Eucalyptus species against Micrococcus loteus and Escherichia coli. Iranian Journal of Medicinal and Aromatic Plants, 27, 440-449. (In Farsi)
  47. Vercoe,E.P., Makkar,H.P.S. & Schlink,A.C. (2010a).In Vitro Screening of Plant Resources for Extra-Nutritional Attributes in Ruminants: Nuclear and Related Methodologies (Ed.), In Vitro Screening of Feed Resources for Efficiency of Microbial Protein Synthesis (pp. 106-144). New York: Springer.
  48. Wallace, R.J. (2004). Antimicrobial properties of plant secondary metabolites.Proceedings of the Nutrition Society, 63, 621–629.
  49. Wang, Y., McAllister, T.A., Yanke, L.J. & Cheeke, P.R. (2000). Effect of steroidal saponins from Yucca schidigera extract on ruminal microbes. Journal Applied Microbial, 88, 887–896.
  50. Xu, J., Zhou, F., Ji, B. P., Pei, R. S. & Xu, N. (2008). The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Letter Applied Microbiology, 47, 174–179.