تعیین معادلات پیش بینی اسید آمینه‌های استاندارد شده ایلئومی در منابع مختلف پودر گوشت طیوری در جوجه‌های گوشتی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم دامی، دانشکده کشاورزی دانشگاه تهران. کرج ایران

چکیده

این آزمایش به منظور تعیین معادلات پیش بینی اسید آمینه های قابل هضم استاندارد شده ایلئومی (SID)  پودر گوشت طیوری بر اساس ترکیبات شیمیایی آن انجام شد. تعداد 270 قطعه جوجه گوشتی نر یک روزه نژاد راس 308 در یک طرح کاملا تصادفی در  نه گروه آزمایشی (پنج تکرار/شش قطعه پرنده در هر تکرار) استفاده شد. گروه های آزمایشی شامل هشت جیره نیمه خالص که هر کدام حاوی یکی از منابع پودر گوشت طیوری به عنوان تنها منبع پروتئین جیره بود و همچنین یک جیره عاری از نیتروژن به منظور تعیین اسیدهای آمینه SID استفاده شد. در سن 28 روزگی، همه پرندگان کشتار شده و نمونه های ماده هضمی از ناحیه ایلئوم جهت  اندازه گیری خاکستر نامحلول در اسید و  اسید آمینه ها جمع آوری شد. از بین اسید آمینه هایSID اندازه گیری شده، برای مثال اسید امینه های متیونین و لیزین به ترتیب از 52/0 تا 89/0درصد و 88/1 تا 44/2 درصد متغیر بود (P<0.05). در نهایت، با توجه به شاخص های آماری ضریب تبیین تطبیق داده شده و خطای استاندارد پیش‌بینی، بهترین معادلات برای 10 اسید آمینهSID  براورد شد که به عنوان مثال معادلات پیش‌بینی اسیدهای آمینهSID  لیزین، متیونین، متیونین+سیستین و ترئونین پیشنهاد شد:
 
dLys =0.937 + 0.022 × CP - 0.057 × Ash (SEP 0.033; Adjusted R2 0.966)
dMet =0.055 + 0.009 × CP (SEP 0.550; Adjusted R2 0.806)
dMet + dCys = 0.250 × CP (SEP 0.114; Adjusted R2 0.994)
dThr = 0.023 × CP + 0.015 × EE (SEP 0.085; Adjusted R2 0.997)

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determination of standardized ileal digestible amino acids prediction equations of poultry by-products meal in broiler chicken

نویسندگان [English]

  • Asghar Aghaei Eshtejarani
  • Hossein Moravej
  • Fatemeh Ghaziani
Department of animal science, Faculty of agriculture and natural sources, University of Tehran, Iran, Karaj
چکیده [English]

This experiment was conducted to determine the prediction equations of standardized ileal digestible amino acids) SID (contents of poultry by-products meal (PBM) based on its chemical compositions. A total of 270 one-day-old Ross 308 male broiler chicks in nine dietary treatments (five replicates/six birds) were used. The treatments were included eight semi-purified diets containing each of PBM as the only source of dietary protein and one nitrogen free diet in order to determine SID amino acids. On day 28, the birds were euthanized to collecting ileal digesta for further analyses of acid insoluble ash and amino acids.  The SID contents of Met and Lys was varied from 0.52 to 0.89% and 1.88 to 2.46%, respectively (P< 0.05). Finally, according to adjusted coefficient of determination and standard error of prediction the best prediction equations were selected to predict 10 SID amino acids of PBM. For example, the prediction equations of Lys, Met, Met + Cys and Thr was recommended as:
dLys = 0.937 + 0.022 × CP - 0.057 × Ash (SEP 0.033; Adjusted R2 0.966)
dMet = 0.0550 + 0.009 × CP (SEP 0.550; Adjusted R2 0.806)
dMet + dCys = 0.250 × CP (SEP 0.114; Adjusted R2 0.994)
dThr = 0.023 × CP + 0/015 × EE (SEP 0.085; Adjusted R2 0.997)

کلیدواژه‌ها [English]

  • Amino acid
  • Broiler
  • Poultry by-products meal
  • Prediction equation
  • Standardized ileal digestible

Extended Abstract

Introduction and Objective

 The costs and provision of protein sources are significantly challenging for animal production and feed industries.  Previous research has focused on developing animal feed sources such as fish poultry by-product meal (PBM) to replace conventional feed ingredients. PBM quality is more variable due to the higher inclusion of low-quality by-products such as feathers, heads, and feet. The cost of these animal protein sources depends on the world supply and demand for the product. It is necessary to evaluate the nutrients and energy utilization of those ingredients. There are many options to determine amino acids values of PBM for diet formulation, such as in vivo experiments or biological methods, international tables, near-infrared reflectance spectroscopy (NIR) device, and prediction equations in the articles. These alternatives, including biological methods and NIR devices, entail significant expenses due to the requirement for various items such as cages, birds, time, and expertise. A rapid way to determine the SID amino acids value can be established through prediction equations developed based on the chemical composition of feedstuffs, which is easy and quick to obtain in most cases. Therefore, defining an appropriate prediction regression equation for SID amino acids of conventional PBM with modern broiler strains is necessary. Due to the importance of SID amino acids in poultry nutrition and the effectiveness of prediction equations to determine the SID amino acids value of rations accurately, the objectives of this study were to evaluate the chemical composition of different origins of PBM to determine their SID amino acids prediction regression equations based on the chemical composition.

 

Material and Methods

     Chemical composition of eight different origins samples of PBM were obtained from different producer in Iran. These origins were: Urom chakavak, Urom ghohardaneh, Peygir, Behparvar, Nickpeykar, Varamine, Ghoghnos, and Sepid makian. Each PBM sample with 3 replicates were analyzed. AOAC International (2000) analytical methods (930.15, 920.39, 990.03, 978.10 and 942.05 respectively) was used to analyze dry matter (DM), ash, crude protein (CP), crude fiber (CF), and ether extract (EE) of all PBM samples neutral detergent fiber (NDF) and acid detergent fiber (ADF) were analyzed. The gross energy (GE) of samples was measured by an adiabatic calorimetric bomb (Ika- Calorimeter; C400 adiabatisch, Germany). The general linear model procedure and least-squares means method were used to compare means of chemical compositions, SID amino acids. To predict each of individual SID amino acids content of PBM samples, the Simple and multiple linear regression were used by SPSS software version 19. A total of 270 one-day-old Ross 308 male broiler chicks in nine dietary treatments (five replicates/six birds) were used. The treatments were included eight semi-purified diets containing each of PBM as the only source of dietary protein and one nitrogen free diet in order to determine SID amino acids. Birds were allowed ad libitum access to a corn- soybean meal starter diet until 10 days, a grower diet from 11 to 23 days, and then experimental diets from 24 to 28 days of age. On day 28, the birds were euthanized to collecting ileal digesta for further analyses of acid insoluble ash and amino acids. 

 

Results

     The SID contents of Met and Lys was varied from 0.52 to 0.89% and 1.88 to 2.46%, respectively (P< 0.05). Finally, according to adjusted coefficient of determination and standard error of prediction the best prediction equations were selected to predict 10 SID amino acids of PBM. For example, the prediction equations of Lys, Met, Met + Cys and Thr was recommended:

 

dLys = 0.937 + 0.022 × CP - 0.057 × Ash (SEP 0.033; Adjusted R2 0.966)

dMet = 0.0550 + 0.009 × CP (SEP 0.550; Adjusted R2 0.806)

dMet + dCys = 0.250 × CP (SEP 0.114; Adjusted R2 0.994)

dThr = 0.023 × CP + 0/015 × EE (SEP 0.085; Adjusted R2 0.997)

 

Conclusion

According to the results of this study, it is concluded that the SID amino acids content of PBM were variable. Therefore, it is not feasible to consider a fix value for amino acids content in diet formulation. On the other hand, it is difficult for poultry nutritionists to measure the SID amino acid contents of different PBM. It seems that the prediction equations obtained from this study can be used for poultry nutritionists to predict the SID amino acid contents of PBM easily and fast with high accuracy.

Author Contributions

All authors contributed equally to the conceptualization of the article and writing of the original and subsequent drafts.

Data Availability Statement

Data available on request from the authors.

Acknowledgements

The authors would like to thank all participants of the present study.

Ethical considerations

The study was approved by the Ethics Committee of the University of Tehran (Ethical code: IR.UT.RES.2024.500). The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

Adedokun, S.,Adeola, O.,Parsons, C.,Lilburn, M., and Applegate, T. 2008. Standardized ileal amino acid digestibility of plant feedstuffs in broiler chickens and turkey poults using a nitrogen-free or casein diet. Poultry Science, 87(12), 2535-2548.
Adedokun, S.,Utterback, P.,Parsons, C. M.,Adeola, O.,Lilburn, M., and Applegate, T. 2009. Comparison of amino acid digestibility of feed ingredients in broilers, laying hens and caecectomised roosters. British poultry science, 50(3), 350-358.
AOACInternational. 2000. Official methods of analysis of AOAC International (Vol. 1). AOAC international Gaithersburg.
AOACInternational. 2005. Official Methods of Analysis, 18th ed. Association of Official Analytical Chemists, Arlington, VA.
Cramer, K.,Greenwood, M.,Moritz, J.,Beyer, R., and Parsons, C. 2007. Protein quality of various raw and rendered by-product meals commonly incorporated into companion animal diets. Journal of animal science, 85(12), 3285-3293.
Dale, N.,Fancher, B.,Zumbado, M., and Villacres, A. 1993. Metabolizable energy content of poultry offal meal. Journal of applied poultry research, 2(1), 40-42.
Dozier III, W.,Dale, N., and Dove, C. 2003. Nutrient compostion of feed-grade and pet-food-grade poultry by-product meal. Journal of applied poultry research, 12(4), 526-530.
Ebadi, M.,Sedghi, M.,Golian, A., and Ahmadi, H. 2011. Prediction of the true digestible amino acid contents from the chemical composition of sorghum grain for poultry. Poultry Science, 90(10), 2397-2401.
Feedstuffs. 2016 Feedstuffs Ingredient analysis table (Vol. 83). https://www.feedstuffs.com/
Frikha, M.,Serrano, M.,Valencia, D.,Rebollar, P.,Fickler, J., and Mateos, G. 2012. Correlation between ileal digestibility of amino acids and chemical composition of soybean meals in broilers at 21 days of age. Animal Feed Science and Technology, 178(1-2), 103-114.
Hoehler, D.,Goodson, J.,Fontaine, J.,Jaeger, A., and Schirmer, B. 2005. " NIR Spectroscopy for Prediction of Amino Acids in Feed Ingredients," 66th Minnesota Nutrition Conference and Technical Symposium: Future of Corn In Animal Feed, Proceedings, September 20-21, 2005, St. Paul, Minnesota.
Huang, K.,Li, X.,Ravindran, V., and Bryden, W. 2006. Comparison of apparent ileal amino acid digestibility of feed ingredients measured with broilers, layers, and roosters. Poultry Science, 85(4), 625-634.
Kim, E.,Utterback, P.,Applegate, T., and Parsons, C. 2011. Comparison of amino acid digestibility of feedstuffs determined with the precision-fed cecectomized rooster assay and the standardized ileal amino acid digestibility assay. Poultry Science, 90(11), 2511-2519.
Kluth, H., and Rodehutscord, M. 2006. Comparison of amino acid digestibility in broiler chickens, turkeys, and Pekin ducks. Poultry Science, 85(11), 1953-1960.
Lemme, A.,Ravindran, V., and Bryden, W. 2004. Ileal digestibility of amino acids in feed ingredients for broilers. World's Poultry Science Journal, 60(4), 423-438.
Najafabadi, H. J.,Moghaddam, H. N.,Pourreza, J.,Shahroudi, F. E., and Golian, A. 2007. Determination of chemical composition, mineral contents, and protein quality of poultry by-product meal. International Journal of Poultry Science, 6(12), 875-882.
NationalResearchCouncil. 1994. Nutrient Requirements of Poultry. 9th rev. ed. Natl. Acad. Press, Washington, DC.
Perttilä, S.,Valaja, J.,Partanen, K.,Jalava, T., and Venäläinen, E. 2002. Apparent ileal digestibility of amino acids in protein feedstuffs and diet formulation based on total vs digestible lysine for poultry. Animal Feed Science and Technology, 98(3-4), 203-218.
Robertson, J. 1981. The detergent system of analysis and its application to human foods. The analysis of dietary fibres in food., 123-158.
Samli, H. E.,Senkoylu, N.,Ozduven, M. L.,Akyurek, H., and Agma, A. 2006. Effects of poultry by product meal on laying performance, egg quality and storage stability. Pakistan Journal of Nutrition, 5(1), 6-9.
Senkoylu, N.,Samli, H.,Akyurek, H.,Agma, A., and Yasar, S. 2005. Performance and egg characteristics of laying hens fed diets incorporated with poultry by-product and feather meals. Journal of applied poultry research, 14(3), 542-547.
Sheikhhasan, B. S.,Moravej, H.,Shivazad, M.,Ghaziani, F.,Esteve-Garcia, E., and Kim, W. K. 2020. Prediction of the total and standardized ileal digestible amino acid contents from the chemical composition of soybean meals of different origin in broilers. Poultry Science, 99(10), 4947-4957.
Silva, E. P. d.,Rabello, C. B.-V.,Albino, L. F. T.,Ludke, J. V.,Lima, M. B. d., and Dutra Junior, W. M. 2010. Prediction of metabolizable energy values in poultry offal meal for broiler chickens. Revista Brasileira de Zootecnia, 39, 2237-2245.
Van Soest, P. v.,Robertson, J. B., and Lewis, B. A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of dairy science, 74(10), 3583-3597.
Volpato, J. A.,Ribeiro, L. B.,Torezan, G. B.,da Silva, I. C.,de Oliveira Martins, I.,Genova, J. L.,de Oliveira, N. T. E.,Carvalho, S. T.,de Oliveira Carvalho, P. L., and Vasconcellos, R. S. 2022. Characterization of the variations in the industrial processing and nutritional variables of poultry by-product meal. Poultry Science, 101(7), 101926.
Yegani, M.,Swift, M.,Zijlstra, R., and Korver, D. 2013. Prediction of energetic value of wheat and triticale in broiler chicks: a chick bioassay and an in vitro digestibility technique. Animal Feed Science and Technology, 183(1-2), 40-50.
Zhu, J.,Zeng, Z.,Shurson, G., and Urriola, P. 2018. A meta-analysis to predict the concentration of standardized ileal digestible amino acids in distillers dried grains with solubles for poultry. Poultry Science, 97(12), 4359-4366.
Zuber, T.,Maurer, H.,Möhring, J.,Nautscher, N.,Siegert, W.,Rosenfelder, P., and Rodehutscord, M. 2016. Variability in amino acid digestibility of triticale grain from diverse genotypes as studied in cecectomized laying hens. Poultry Science, 95(12), 2861-2870.