تأثیر مکمل آلی روی و مس پایدار شده در شکمبه بر فراسنجه‌های تولید گاز، عملکرد، قابلیت هضم مواد مغذی و فعالیت آنزیم های آنتی اکسیدانی بره های پرواری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران

2 گروه علوم دامی، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران.

3 گروه نانوفناوری مواد غذایی، پژوهشکده علوم و صنایع غذایی مشهد، مشهد، ایران

چکیده

هدف از انجام این آزمایش بررسی اثرات کیلات عناصر مس و روی ساخته شده بر پایه نانوفیبریل ایزوله پروتئین آب پنیر به همراه پلی­فنول پوست انار بر عملکرد تولیدی، شاخص­های خونی، فعالیت آنزیم­های آنتی­اکسیدانی خون بره­های پرواری و تخمیر شکمبه در شرایط درون­تنی و برون­تنی بود. برای این منظور ابتدا کیلات پایدار شده مس و روی در شکمبه با عصاره فنولی پوست انار ساخته شد. در مرحله بعد اثر مکمل ساخته شده بر تولید گاز شکمبه­ای بررسی گردید. سپس تعداد 18رأس بره نر نژاد کردی خراسان با میانگین وزن اولیه 27/2±60/30 کیلوگرم به­طور تصادفی با یکی از جیره­های آزمایشی شامل: 1) جیره پایه، 2)جیره پایه به علاوه مکمل مس و روی به شکل سولفات و 3) جیره پایه به علاوه مکمل کیلات پایدار شده مس و روی تغذیه شدند. دوره آزمایشی 84 روز بود. نتایج نشان داد که  مکمل کردن جیره با کیلات پایدار شده در شکمبه، پتانسیل تولید گاز و ثابت نرخ تولید گاز را افزایش داد (05/0>P). مصرف خوراک روزانه، میانگین افزایش وزن روزانه و وزن پایانی بره­ها با مصرف مکمل روی و مس بهبود یافت (05/0>P) ولی ضریب تبدیل غذایی تحت تأثیر سطح و نوع مکمل در جیره قرار نگرفت. استفاده از مکمل مس و روی سبب افزایش قابلیت هضم ظاهری ماده خشک، ماده آلی و فیبر نامحلول در شوینده خنثی شد (05/0>P)، اما قابلیت هضم چربی، پروتئین­ خام و فیبر نامحلول در شوینده اسیدی تحت تأثیر قرار نگرفت. افزودن مکمل‌های آلی و معدنی روی به جیره بره‌های پرواری بر غلظت پروتئین تام، آلبومین، آنزیم سوپر اکسید دیسموتاز و گلوتاتیون پراکسیداز را افزایش داد (05/0>P)، اما تأثیر معنی‌داری بر غلظت گلوکز، تری­گلیسرید، کلسترول و فعالیت آلکالین فسفاتاز سرم نداشت. به طور کلی نتایج این مطالعه نشان داد که استفاده از مکمل روی و مس صرف نظر از نوع منبع آن می‌تواند منجر به افزایش پتانسیل تولید گاز، بهبود عملکرد رشد در بره‌های پرواری و افزایش فعالیت آنزیم­های کبدی و آنتی­اکسیدانی مرتبط با این عناصر ­شود. از طرفی مکمل کیلات پایدار ساخته شده در این پژوهش در مقایسه با شکل معدنی اثرات بهتری داشته که نشان دهنده زیست فراهمی بالاتر آن می­باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Organic Supplementation of Zinc and Copper Stabilized in the Rumen on Gas Production, Performance, Nutrient Digestibility, and Antioxidant Enzyme Activities in Fattening Lambs

نویسندگان [English]

  • yaser feizdar barabadi 1
  • seyyed ehsan ghiasi 2
  • Rassoul Kadkhodaee 3
  • Mohsen Mojtahedi 1
1 Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran.
2 Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran.
3 Department of Food Nanotechnology, Research Institute of Food Science and Technology, Mashhad, Iran
چکیده [English]

The aim of this research was to investigate the effects of chelate made based on whey protein isolate nanofibrils and the inorganic form of copper and zinc elements on production performance, blood indices, antioxidant enzyme activity, and rumen fermentation of fattening lambs in vivo and in vitro. For this purpose, stabilized copper and zinc chelate was made in the rumen with the phenolic extract of pomegranate peel. In the next step, the effect of the supplements on ruminal gas production was investigated. Then, a total of 18 Kurdish male lambs of Khorasan with an average initial weight of 30.60 ± 2.27 kg were randomly assigned to one of the experimental diets including: 1) control diet, 2) control diet plus sulfate copper and zinc supplements, and 3) control diet plus stabilized copper and zinc chelate supplement. The trial period was 84 days. The results showed that supplementing the diet with stabilized chelate in the rumen increased the gas production potential and gas production rate constant (P<0.05). Daily feed consumption, average daily weight gain, and final weight of lambs increased with zinc and copper supplementation (P<0.05), but food conversion ratio was not affected by the level and type of supplementation in the diet. The use of zinc supplement increased the apparent digestibility of dry matter, organic matter, and neutral detergent insoluble fiber (P<0.05), but the digestibility of fat, crude protein, and acidic detergent insoluble fiber of the feed was influenced by feeding with surface and the type of zinc supplement was not placed. In this study, the addition of organic and mineral zinc and copper supplements to the diet of fattening lambs increased the concentration of total protein, albumin, superoxide dismutase, and glutathione peroxidase (P<0.05), but had no significant effect on the concentration of glucose, triglyceride, cholesterol, and serum alkaline phosphatase enzyme activity. In general, the results of this study showed that the use of zinc and copper supplements, regardless of the type of source, can lead to an increase in gas production potential, an improvement in growth performance in fattening lambs, and an increase in liver and antioxidant enzyme activity related to these elements. On the other hand, the stable chelate supplement made in this study had better effects compared to the mineral form, which indicates its higher bioavailability.

کلیدواژه‌ها [English]

  • protein nanofibrils
  • Ruminal fermentation
  • stabilized supplement
  • trace minerals

Extended Abstract

Introduction

    Zinc and copper are essential trace minerals that are crucial for maintaining the health and optimal production of animals. In animal feed, mineral supplements are commonly used, both in organic and inorganic forms. However, during the digestion process, these mineral forms can dissociate and interact with other molecules, resulting in reduced absorption and bioavailability, particularly for trace minerals. Thus, the objective of this research was to examine the effects of a chelate composed of whey protein isolate nanofibrils, as well as inorganic copper and zinc, on the production performance, blood indices, antioxidant enzyme activity, and rumen fermentation of fattening lambs, both in vivo and in vitro.

 

Materials and methods

    To facilitate the formation of stable chelates of copper and zinc in the rumen, whey protein was initially utilized to generate nanofibrils. During the nanofibril formation process, copper and zinc elements in the form of sulfate, along with 1% phenolic extract of pomegranate peel, were incorporated into the target solution. The resulting solution was subsequently subjected to centrifugation and freeze-drying to produce a stable chelate supplement. In a completely randomized design, eighteen male Kurdish lambs with an average initial weight of 30.60 ± 2.27 kg were assigned to one of three experimental diets. These diets consisted of: 1) control diet (containing zinc: 28.14 mg/kg of DM, copper: 4.164 mg/kg of DM), 2) control diet supplemented with copper and zinc in the form of sulfate (containing zinc: 58.33 mg/kg of DM, copper: 9 mg/kg of DM), and 3) control diet supplemented with stabilized copper and zinc chelate (chelate made from whey protein isolate nanofibrils with polyphenol of pomegranate peel extract, containing zinc: 58.33 mg/kg of DM, copper: 9 mg/kg of DM). These diets were administered to the lambs for a period of 12 weeks. Throughout the experimental period, the animals were weighed every two weeks, and measurements were taken for feed consumption, daily weight gain, food conversion ratio, and nutrient digestibility. Blood samples were collected on days 0, 28, 56, and 84, to assess blood parameters and liver enzymes. For the in vitro test, the semi-automatic gas production technique was employed, with 21 repetitions and 2 runs for each test. Measurements of pH, ammonia nitrogen concentration, and in vitro dry matter digestibility were recorded at 8, 12, 24, and 48 hours. Statistical analyses were conducted using the MIXED procedure for repeated data over time, and the GLM procedure of SAS software for data that were only repeated once over time. Averages were compared using the Tukey-Kramer test.

 

Results and discussion

   The results indicated that supplementing the diet with stabilized chelate in the rumen significantly increased the gas production potential and gas production rate constant (P<0.05). However, the lag phase, pH, ammonia nitrogen concentration, and in vitro digestibility of dry matter were not affected by the treatments. Additionally, zinc and copper supplementation led to an increase in daily feed intake, average daily weight gain, and final weight of lambs (P<0.05). However, the food conversion ratio was not influenced by the level and type of supplement in the diet. The use of zinc supplement resulted in improved apparent digestibility of dry matter, organic matter, and neutral detergent insoluble fiber (P<0.05). On the other hand, the digestibility of fat, crude protein, and acidic detergent insoluble fiber of the feed was influenced by the feeding surface, but not by the type of zinc supplement used. Furthermore, in this study, the addition of organic and mineral zinc supplements to the diet of fattening lambs increased the concentration of total protein, albumin, superoxide dismutase, and glutathione peroxidase (P<0.05). However, it had no significant effect on the concentration of glucose, triglyceride, cholesterol, and serum alkaline phosphatase enzyme activity.

 

Conclusion

Overall, this study's findings show that using zinc and copper supplements, regardless of where they come from, can increase gas production potential and enhance the growth performance of fattening lambs. These supplements also lead to increased liver and antioxidant enzyme activity associated with these elements. In contrast, the stable chelate supplement developed in this study had even better effects compared to the mineral form, indicating that it is more easily absorbed by the body.

 

Author Contributions

For research articles with several authors, a short paragraph specifying their individual contributions must be provided. The following statements should be used “Conceptualization, X.X. and Y.Y.; methodology, X.X.; software, X.X.; validation, X.X., Y.Y. and Z.Z.; formal analysis, X.X.; investigation, X.X.; resources, X.X.; data curation, X.X.; writing—original draft preparation, X.X.; writing—review and editing, X.X.; visualization, X.X.; supervision, X.X.; project administration, X.X.; funding acquisition, Y.Y. All authors have read and agreed to the published version of the manuscript.” Please turn to the CRediT taxonomy for the term explanation. Authorship must be limited to those who have contributed substantially to the work re-ported.

All authors contributed equally to the conceptualization of the article and writing of the original and subsequent drafts.

Data Availability Statement

In this section, please provide details regarding where data supporting reported results can be found, including links to publicly archived datasets analyzed or generated during the study (see examples). Data available on request from the authors.

If the study did not report any data, you might add “Not applicable” here.

Acknowledgements

The Acknowledgments section should be a few sentences at the end, but it is important to recognize those people (organizations and individuals) who made considerable impact on the research, provided significant help to the author to formulate and complete the experiment, and improved the research at any stage (from providing access to equipment or field sites to editing the manuscript). However, this is an optional section.

In this section, you can acknowledge any support given which is not covered by the author contribution or funding sections. This may include administrative and technical support, or donations in kind (e.g., materials used for experiments).

The authors would like to thank all participants of the present study.

Ethical considerations

The study was approved by the Ethics Committee of the University of ABCD (Ethical code: IR.UT.RES.2024.500). The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

 

Conflict of interest

The author declares no conflict of interest.

منابع

بخشی زاده، سمیه؛ میرزائی آقجه قشلاق، فرزاد، تقی زاده، اکبر، سیف دواتی، جمال و نویدشاد، بهمن (1400). اثرات اشکال مختلف عنصر روی بر خصوصیات هضمی خوراک گاوهای شیرده با تولید بالا، با‏ استفاده از روش‌های تولید گاز و کیسه نایلونی. پژوهش های علوم دامی (دانش کشاورزی)، 31(1)، 53-66.‎
چراغی، مشعوف لیلا؛ عربی، حسنعلی، فرح آور، عباس، زمانی، پویا و علیمحمدی، رضا (1397). تأثیر افزودن روی و مس به جیره ی میش های آبستن در اواخر دوره ی آبستنی بر پروفیل مواد کانی خون و شیر، عملکرد رشد بره ها و برخی فراسنجه های خونی.‎ علوم دامی ایران، 49 (2)، 284-267.
صوفی، بهاره؛ علی­جو، یونس­علی، خمیس آبادی، حسن و خوب بخت زینب (1400). تأثیر منابع معدنی، آلی و نانو روی بر عملکرد رشد، فراسنجه های خونی و فعالیت آنتی اکسیدانی در بره های سنجابی.‎ نشریه پژوهش در نشخوارکنندگان ، 9 (4)، 19-32.
 
RERERENCES
Adejoro, F. A. (2019). The use of condensed tannins and nitrate to reduce enteric methane emission and enhance utilization of high-forage diets in sheep (PhD Thesis). University of Pretoria. Pretoria in South Africa.
Alimohamady, R., Aliarabi, H., Bruckmaier, R. M. & Christensen, R. G. (2019). Effect of different sources of supplemental zinc on performance, nutrient digestibility, and antioxidant enzyme activities in lambs. Biological Trace Element Research, 189(1), 75-84.
Arthington, J. D. (2005). Effects of copper oxide bolus administration or high-level copper supplementation on forage utilization and copper status in beef cattle. Journal of Animal Science, 83(12), 2894-2900.‏
Azizi-Shotorkhoft, A., Sharifi, A., Mormohammadi, D., Rezaei, J., Kiani, A., & Fazaeli, H. (2014). Effect of energy source on some hydrolytic enzyme’s activities in different fractions of rumen liquor and N retention in sheep fed diet containing heat-processed broiler litter. Small Ruminant Research, 2, 17-34.
Azizzadeh, M., Mohri, M., & Seifi, H. A. (2005)” Effect of oral zinc supplementation on hematology, serum biochemistry, performance, and health in neonatal dairy calves” Comparative Clinical Pathology, 14, 67–71.
Bakhshizadeh, S., Mirzaei, F., Taghizadeh, A., Seifdavati, J., & Navidshad, B. (2021). The effects of different forms of zinc on characteristics digestibility of diatery dairy cows with high‎ production using gas production and nylon bags techniques. Journal of Animal Science Research, 31(1), 53-66. In persian
Broderick, G. A., & Kang, J. H. (1980). Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science, 63(1), 64-75.‏
Caldera, E., Weigel, B., Kucharczyk, V.N., Sellins, K.S., Archibeque, S.L., Wagner, J.J., Han, H., Spears, J.W., & Engle, T.E. (2019). Trace mineral source influences ruminal distribution of copper and zinc and their binding strength to ruminal digesta. Journal of Animal Science, 97, 1852–1864.
Cheraghi Mashoof, L., Aliarabi, H., Farahavar, A., Zamani, P., & Alimohamady, R. (2018). The effect of adding zinc and copper to diet of late-pregnant ewes on blood and milk minerals profile, lambs’ growth performance and some blood parameters. Iranian Journal of Animal Science, 49(2), 267-28. In Persian
Čobanová, K., Váradyová, Z., Grešáková, Ľ., Kucková, K., Mravčáková, D., & Várady, M. (2020). Does herbal and/or zinc dietary supplementation improve the antioxidant and mineral status of lambs with parasite infection. Antioxidants, 9 (12), 1172.
Engle, T. E., & Spears, J. W. (2000). Dietary copper effects on lipid metabolism, performance, and ruminal fermentation in finishing steers. Journal of Animal Science, 78(9), 2452-2458.‏
Eren, V., Gökdal, Ö., Akşit, H., Atay, O., & Özuğur, A. K. (2013). The effects of additional organic copper and organic zinc trace minerals on accumulation and elimination levels in female kids.‏ Ankara Üniv Vet Fak Derg, 60, 89-92.
Eryavuz, A., & Dehority, B. A. (2009). Effects of supplemental zinc concentration on cellulose digestion and cellulolytic and total bacterial numbers in vitro. Animal Feed Science and Technology, 151(3-4), 175-183.
Fadayifar, A., Aliarabi, H., Tabatabaei, M. M., Zamani, P., Bahari, A., Malecki, M., & Dezfoulian, A. H. (2012). Improvement in lamb performance on barley-based diet supplemented with zinc. Livestock Science, 144(3), 285-289.
Fouda, T.A., Youssef, M.A. and El-Deeb, W.M. (2011). Correlation between zinc
deficiency and immune status of sheep”. Veterinary Research, 4 (2), 50-55.
Getachew, G., Makkar, H. P. S., & Becker, K. (2002). Tropical browses: contents of phenolic compounds, in vitro gas production and stoichiometric relationship between short chain fatty acid and in vitro gas production. The Journal of Agricultural Science, 139(3), 341-352.‏
Genther, O. N., & Hansen, S. L. (2015). The effect of trace mineral source and concentration on ruminal digestion and mineral solubility. Journal of Dairy Science98(1), 566-573.
Goff, J. P. (2018). Invited review: Mineral absorption mechanisms, mineral interactions that affect acid–base and antioxidant status, and diet considerations to improve mineral status. Journal of Dairy Science, 101(4), 2763-2813.‏
Guan, T., Song, J., Wang, Y., Guo, L., Yuan, L., Zhao, Y., Gao, Y., Lin, L., Wang, Y., Wei, J. (2017). “Expression and characterization of recombinant bifunctional enzymes with glutathione peroxidase and superoxide dismutase activities”. Free Radical Biology and Medicine, 110, 188-195.
Hernández-Sierra, J. F., Ruiz, F., Pena, D. C. C., Martínez-Gutiérrez, F., Martínez, A. E., Guillén, A. D. J. P., ... & Castañón, G. M. (2008). The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine: Nanotechnology, Biology and Medicine, 4(3), 237-240.
Hosseini-Vardanjani, S. F., Rezaei, J., Karimi-Dehkordi, S., & Rouzbehan, Y. (2020). Effect of feeding nano-ZnO on performance, rumen fermentation, leukocytes, antioxidant capacity, blood serum enzymes and minerals of ewes. Small Ruminant Research, 191, 106170.
Jadhav, S.E. (2005). “Effect of different levels and sources of zinc supplementation on growth, nutrient utilization, rumen fermentation, blood biochemical and immune response in male buffalo calves”. PhD Thesis. Indian Veterinary Research Institute, Izatnagar, India.
Jarosz, M., Olbert, M., Wyszogrodzka, G., Młyniec, K. & Librowski, T. (2017). “Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling”. Inflammopharmacology, 25,11-24.
Jia, W., Jia, Z., Zhang, W., Wang, R., Zhang, S., & Zhu, X. (2008). Effects of dietary zinc on performance, nutrient digestibility and plasma zinc status in Cashmere goats. Small Ruminant Research, 80(1-3), 68-72.‏
Katulski, S.L. (2017). Effects of mineral supplementation on growing cattle and in vitro fermentation by ruminal microbes (PhD Thesis). Kansas State University. Lawrence in the state of Kansas, USA.
Kennedy, D. W., Craig, W. M., & Southern, L. L. (1993). Ruminal distribution of zinc in steers fed a polysaccharide-zinc complex or zinc oxide. Journal of Animal Science, 71(5), 1281-1287.‏
Klevay, L. M. (1973). Hypercholesterolemia in rats produced by an increase in the ratio of zinc to copper ingested. The American Journal of Clinical Nutrition, 26(10), 1060-1068.
Ma, F., Wo, Y., Li, H., Chang, M., Wei, J., Zhao, S. and Sun, P. 2020. Effect of the source of zinc on the tissue accumulation of zinc and jejunal mucosal zinc transporter expression in holstein dairy calves. Animals, 10(8), 1246.
Mallaki, M., Norouzian, M. A., & Khadem, A. A. (2015). Effect of organic zinc supplementation on growth, nutrient utilization, and plasma zinc status in lambs. Turkish Journal of Veterinary & Animal Sciences, 39(1), 75-80.
Mandal, G. P., Dass, R. S., Garg, A. K., Varshney, V. P., & Mondal, A. B. (2008). Effect of zinc supplementation from inorganic and organic sources on growth and blood biochemical profile in crossbred calves. Journal of Animal and Feed Sciences, 17(2), 147.
Mantovani, R. A., de Figueiredo Furtado, G., Netto, F. M., & Cunha, R. L. (2018). Assessing the potential of whey protein fibril as emulsifier. Journal of Food Engineering, 223, 99-108.
McDonald, P., Edwards, R. A., Greenhalgh, J. F. D., Morgan, C. A., & Sinclair, L. A. (2011). Animal nutrition 6th ed. Essex: Longman Scientific and Technical.
Mion, B., Van Winters, B., King, K., Spricigo, J. F. W., Ogilvie, L., Guan, L., & Ribeiro, E. S. (2022). Effects of replacing inorganic salts of trace minerals with organic trace minerals in pre-and postpartum diets on feeding behavior, rumen fermentation, and performance of dairy cows. Journal of Dairy Science, 105(8), 6693-6709.‏
Mohammadian, M., & Madadlou, A. (2016). Cold-set hydrogels made of whey protein nanofibrils with different divalent cations. International Journal of Biological Macromolecules, 89, 499-506.
Nagalakshmi, D., & Himabindu, D. (2013). Effect of zinc supplementation from organic and inorganic sources on performance, nutrient utilization and carcass characteristics in lambs. The Indian Journal of Animal Sciences, 83(4), 411-418.
Nagalakshmi, D., Dhanalakshmi, K. & Himabindu, D. (2009). “Effect of dose and source of supplemental zinc on immune response and oxidative enzymes in lambs”. Veterinary Research Communications, 33, 631-644.
Nakajima, S., Hira, T., Iwaya, H. & Hara, H. (2016). Zinc directly stimulates cholecystokinin secretion from enteroendocrine cells and reduces gastric emptying in rats. Molecular and Cellular Endocrinology, 15, 108-114.
Nanev, V., Vladov, I., & Kirazov, L. (2020). Serum trace elements and enzymes in lambs with introduced haemonchosis. Acta Morphologica et Anthropologica, 27(3-4), 43-48.
Nathaniel, G., Annisa, T., Muktiani, A., Harjanti, D. W., & Widiyanto, W. (2021). The Effect of Zinc-Proteinate Supplementation on the In Vitro Digestibility and Ruminal Fermentation in Goat. Animal Production, 23(3), 180-186.‏
Naumann, H. D., Tedeschi, L. O., Zeller, W. E., & Huntley, N. F. (2017). The role of condensed tannins in ruminant animal production: advances, limitations and future directions. Revista Brasileira de Zootecnia, 46, 929-949.
Neyestani, M., Shavali-Gilani, P., Fesahat, M., Molaee-Aghaee, E., & Shariatifar, N. (2020). The effect of food processing on the amount of trace elements and their bioavailability: a review. Journal of Food Safety and Hygiene, 6(2), 53-66.
Ørskov, E. R., & I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to the passage rate. Journal of Agriculture Science, 92, 499- 503.
Paglia, D. E., & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. The Journal of Laboratory and Clinical Medicine, 70(1), 158-169.
Pal, R. P., Mani, V., Sarkar, S., Mir, S. H., Sharma, A., & Sharma, H. (2020). Comparing the effect of different levels of zinc hydroxychloride with inorganic zinc sulfate on in vitro rumen fermentation parameters. Indian Journal of Dairy Science, 73(6).
Patra, A. K., & Saxena, J. (2011). Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. Journal of the Science of Food and Agriculture, 91(1), 24-37.
Pi, Z. K., Wu, Y. M., & Liu, J. X. (2005). Effect of pretreatment and pelletization on nutritive value of rice straw-based total mixed ration, and growth performance and meat quality of growing Boer goats fed on TMR. Small Ruminant Research, 56(1-3), 81-88.
Ramulu, S. P., Nagalakshmi, D., & Kumar, M. K. (2015). Effect of zinc supplementation on hematology and serum biochemical constituents in Murrah buffalo calves. Indian Journal of Animal Research, 49(4), 482-486.
Schlegel, P., Wyss, U., Arrigo, Y., & Hess, H. D. (2016). Mineral concentrations of fresh herbage from mixed grassland as influenced by botanical composition, harvest time and growth stage. Animal Feed Science and Technology, 219, 226-233.
Serra, S. D., Serra, A. B., Ichinohe, T., & Fujihara, T. (1997). Ruminal solubility of trace elements from selected Philippine forages. Asian-Australasian Journal of Animal Sciences, 10(4), 378-384.
Sobhanirad, S., M. H. Mashhadi, & R. B. Kashani. (2014). Effects of source and level of zinc on haematological and biochemical parameters in Baluchi lambs. Research Opinions in Animal and Veterinary Sciences, 4 (7), 389-393.
Solaiman, S. G., Craig Jr, T. J., Reddy, G., & Shoemaker, C. E. (2007). Effect of high levels of Cu supplement on growth performance, rumen fermentation, and immune responses in goat kids. Small ruminant research, 69(1-3), 115-123.‏
Solaiman, S. G., Shoemaker, C. E., & D’andrea, G. H. (2006). The effect of high dietary Cu on health, growth performance, and Cu status in young goats. Small Ruminant Research, 66(1-3), 85-91.
Soufi, B., Alijoo, Y. A., Khamisabadi, H., & Khoobbakht, Z. (2022). The effect of inorganic, organic and nano-zinc sources on growth performance, blood parameters and antioxidant activity of Sanjabi lambs. Journal of Ruminant Research, 9(4), 19-32. In persian
Spears, J. W., & Kegley, E. B. (2002). Effect of zinc source (zinc oxide vs zinc proteinate) and level on performance, carcass characteristics, and immune response of growing and finishing steers. Journal of Animal science, 80(10), 2747-2752.‏
Spears, J. W., Schlegel, P., Seal, M. C., & Lloyd, K. E. (2004). Bioavailability of zinc from zinc sulfate and different organic zinc sources and their effects on ruminal volatile fatty acid proportions. Livestock Production Science, 90(2-3), 211-217.‏
Stewart, W. C., Scasta, J. D., Taylor, J. B., Murphy, T. W., & Julian, A. A. M. (2021). Invited Review: Mineral nutrition considerations for extensive sheep production systems. Applied Animal Science, 37(3), 256-272.‏
Sun, X., Sarteshnizi, R. A., Boachie, R. T., Okagu, O. D., Abioye, R. O., Pfeilsticker Neves, R., & Udenigwe, C. C. (2020). Peptide–mineral complexes: Understanding their chemical interactions, bioavailability, and potential application in mitigating micronutrient deficiency. Foods, 9(10), 1402.‏
Suttle NF. (2010). Mineral Nutrition of Livestock (fourth edition). CAB International, Wallingford, UK. Mineral Nutrition of Livestock.pdf
Van Keulen, J., & Young, B. (1977). Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. Journal of Animal Science, 44(2), 282–287.
Van Soest, PJ, Robertson, J.B., & Lewis, B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583–3597.
Váradyová, Z., Mihaliková, K., Kisidayova, S., & Javorsky, P. (2006). Fermentation pattern of the rumen and hindgut inocula of sheep grazing in an area polluted from the non-ferrous metal industry. Czech Journal of Animal Science, 51(2), 66.‏
Vázquez-Armijo, J. F., Martínez-Tinajero, J. J., López, D., Salem, A. F. Z. M., & Rojo, R. (2011). In vitro gas production and dry matter degradability of diets consumed by goats with or without copper and zinc supplementation. Biological Trace Element Research, 144, 580-587.
Vigh, A., Criste, A., Gragnic, K., Moquet, L., & Gerard, C. (2023). Ruminal Solubility and Bioavailability of Inorganic Trace Mineral Sources and Effects on Fermentation Activity Measured in Vitro. Agriculture, 13(4), 879.‏
Wang, R. L., Liang, J. G., Lu, L., Zhang, L. Y., Li, S. F., & Luo, X. G. (2013). Effect of zinc source on performance, zinc status, immune response, and rumen fermentation of lactating cows. Biological Trace Element Research, 152, 16-24.
Ye, X., Lendel, C., Langton, M., Olsson, R. T., & Hedenqvist, M. S. (2019). Protein nanofibrils: Preparation, properties, and possible applications in industrial nanomaterials. In Industrial Applications of Nanomaterials, 29-63.
Zhang, F., Nan, X., Wang, H., Guo, Y. and Xiong, B. (2020). Research on the Applications of Calcium Propionate in Dairy Cows: A Review. Animals (Basel), 3 (8), 1336.
Zhao, X., Hao, L., Xue, Y., Degen, A., & Liu, S. (2022). Effect of source and level of dietary supplementary copper on in vitro rumen fermentation in growing yaks. Fermentation, 8(12), 693.‏