REFERENCES
Asadollahpour Nanaei, H., Kharrati-Koopaee, H., & Esmailizadeh, A. (2022). Genetic diversity and signatures of selection for heat tolerance and immune response in Iranian native chickens. BMC genomics, 23(1), 224.
Barnett, R., Westbury, M. V., Sandoval-Velasco, M., Vieira, F. G., Jeon, S., Zazula, G., ... & Gilbert, M. T. P. (2020). Genomic adaptations and evolutionary history of the extinct scimitar-toothed cat, Homotherium latidens. Current Biology, 30(24), 5018-5025.
Biabani, P., Mehrbani Yeganeh, H., & Mokhber, M. (2022). Detection of Genetic Differences between Holstein and Iranian North-West Indigenous Hybrid Cattles using Genomic Data. Research On Animal Production, 13(37), 175-186. (In Persian)
Biswas, S. & Akey, J. M. (2006). Genomic insights into positive Selection. Trends in Genetics, 22(8), 437-436.
Bovo, S., Ribani, A., Muñoz, M., Alves, E., Araujo, J. P., Bozzi, R., ... & Fontanesi, L. (2020). Whole-genome sequencing of European autochthonous and commercial pig breeds allows the detection of signatures of selection for adaptation of genetic resources to different breeding and production systems. Genetics Selection Evolution, 52(1), 1-19.
Bowles, D., Carson, A., & Isaac, P. (2014). Genetic distinctiveness of the Herdwick sheep breed and two other locally adapted hill breeds of the UK. PLoS One, 9(1), e87823.
Browning, B. L., Tian, X., Zhou, Y., & Browning, S. R. (2021). Fast two-stage phasing of large-scale sequence data. The American Journal of Human Genetics, 108(10), 1880-1890.
Browning, S.R. and B.L. Browning. 2007. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. The American Journal of Human Genetics, 81(5): 1084-1097.
Buxadera, A. M., Alexandre, G., & Mandonnet, N. (2004). Discussion on the importance, definition and genetic components of the number of animals born in the litter with particular emphasis on small ruminants in tropical conditions. Small Ruminant Research, 54(1-2), 1-11.
Byrne, T. J., Ludemann, C. I., Amer, P. R., & Young, M. J. (2012). Broadening breeding objectives for maternal and terminal sheep. Livestock Science, 144(1-2), 20-36.
Chu, M. X., Liu, Z. H., Jiao, C. L., He, Y. Q., Fang, L., Ye, S. C., ... & Wang, J. Y. (2007). Mutations in BMPR-IB and BMP-15 genes are associated with litter size in Small Tailed Han sheep (Ovis aries). Journal of Animal Science, 85(3), 598-603.
Crepaldi, P., Bionda, A., Cortellari, M., Lopreiato, V., & Liotta, L. (2023). Selection signatures in Italian hunting dogs. Italian Journal of Animal Science, 22(s1), 91-92.
Demars, J., Fabre, S., Sarry, J., Rossetti, R., Gilbert, H., Persani, L., ... & Bodin, L. (2013). Genome-wide association studies identify two novel BMP15 mutations responsible for an atypical hyperprolificacy phenotype in sheep. PLoS Genetics, 9(4), e1003482.
Deniskova, T., Esmailizadeh, A., Dotsev, A., Koshkina, O., Farahvashi, M. A., Mokhtari, M., ... & Zinovieva, N. (2022). A Search for Eurasian Sheep Relationships: Genomic Assessment of the Autochthonous Sheep Breeds in Russia and the Persian Plateau. Diversity, 14(6), 445.
Diao, S., Huang, S., Chen, Z., Teng, J., Ma, Y., Yuan, X., ... & Zhang, Z. (2019). Genome-wide signatures of selection detection in three South China indigenous pigs. Genes, 10(5), 346.
Ensembl BioMart: Ensembl online genome database BioMart Tool. http://www.ensembl.org/biomart/martview/.
EntrezGene: NCBI Resources EntrezGene. http://www.ncbi.nlm.nih.gov/.
Esmaeili-Fard, S. M., Gholizadeh, M., Hafezian, S. H., & Abdollahi-Arpanahi, R. (2021). Genes and pathways affecting sheep productivity traits: Genetic parameters, genome-wide association mapping, and pathway enrichment analysis. Frontiers in genetics, 12, 710613.
Fariello, M. I., Servin, B., Tosser-Klopp, G., Rupp, R., Moreno, C., International Sheep Genomics Consortium, ... & Boitard, S. (2014). Selection signatures in worldwide sheep populations. PloS one, 9(8), e103813.
Garel, M., Cugnasse, J. M., Gaillard, J. M., Loison, A., Gibert, P., Douvre, P., & Dubray, D. (2005). Reproductive output of female mouflon (Ovis gmelini musimon× Ovis sp.): a comparative analysis. Journal of Zoology, 266(1), 65-71.
Gautier, M. and R. Vitalis. 2012. rehh: an R package to detect footprints of selection in genome-wide SNP data from haplotype structure. Bioinformatics, 28(8): 1176-1177.
Gholizadeh, M., & Esmaeili-Fard, S. M. (2022). Multi-population joint genome-wide association study to detect genomic regions associated with litter size in sheep. Animal Production Research, 11(3), 15-26.
Gootwine, E. (2020). Invited review: Opportunities for genetic improvement toward higher prolificacy in sheep. Small Ruminant Research, 186, 106090.
Gootwine, E. (2020). Invited review: Opportunities for genetic improvement toward higher prolificacy in sheep. Small Ruminant Research, 186, 106090.
Hanrahan, J. P., Gregan, S. M., Mulsant, P., Mullen, M., Davis, G. H., Powell, R., & Galloway, S. M. (2004). Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biology of reproduction, 70(4), 900-909.
Hider, J. L., Gittelman, R. M., Shah, T., Edwards, M., Rosenbloom, A., Akey, J. M. & Parra, E. J. (2013). Exploring signatures of positive selection in pigmentation candidate genes in populations of East Asian ancestry. BMC Evolutionary Biology, 13, 150-160.
Jiang, Y., Xie, M., Chen, W., Talbot, R., Maddox, J. F., Faraut, T., ... & Dalrymple, B. P. (2014). The sheep genome illuminates biology of the rumen and lipid metabolism. Science, 344(6188), 1168-1173.
Khalkhali-Evrigh, R., Hedayat, N., Ming, L., & JIRANmutu. (2022). Identification of selection signatures in Iranian dromedary and Bactrian camels using whole genome sequencing data. Scientific reports, 12(1), 9653.
Kijas, J. W., Lenstra, J. A., Hayes, B., Boitard, S., Porto Neto, L. R. & et al. (2012). Genome-Wide Analysis of the World’s Sheep Breeds Reveals High Levels of Historic Mixture and Strong Recent Selection. PLoS Biology, 10(2), e1001258. doi:10.1371/journal.pbio.1001258.
Kimura, M. (1985). The neutral theory of molecular evolution. Cambridge University Press, New York.
Li, L., Shi, X., Shi, Y., & Wang, Z. (2021). The signaling pathways involved in ovarian follicle development. Frontiers in Physiology, 12, 730196.
Lv, F. H., Agha, S., Kantanen, J., Colli, L., Stucki, S., Kijas, J. W., ... & Ajmone Marsan, P. (2014). Adaptations to climate-mediated selective pressures in sheep. Molecular biology and evolution, 31(12), 3324-3343.
Manzari, Z., Mehrabani Yeghaneh, H., Najati-Javaremi, A., Moradi, M. H., & Gholizadeh, M. (2016). Detection of loci under positive selection in Iranian Baluchi and Zel sheep breeds. Iranian Journal of animal Science, 47(3), 389-398.
Mohammadi, H., Moradi, M. H., & Khaltabadi Farahani, A. H. (2022). Genome-wide association study and pathway analysis for identifying the genes associated with coat color in Lori-Bakhtiari sheep breed. Iranian Journal of animal Science, 53(3), 153-160. (In Persian)
Mohammadi, H., Rafat, S. A., Moradi Shahrbabak, H., Shoja, J., & Moradi, M. H. (2018). Genome-wide analysis for detection of loci under positive selection in Zandi sheep breed. Iranian Journal of animal Science, 48(4), 533-548. (In Persian)
Mokhber, M., Moradi, M., Sadegi, M., Moradi, H. & Williams, J. (2015). Genome-Wide Survey of signature of positive selection in Khuzestani and Mazandrani buffalo breeds. Iranian Journal of Animal Science, 46(2), 119-131. (In Persian)
Mokhber, M., Moradi-Shahrbabak, M., Sadeghi, M., Moradi-Shahrbabak, H., Stella, A., Nicolzzi, E., ... & Williams, J. L. (2018). A genome-wide scan for signatures of selection in Azeri and Khuzestani buffalo breeds. BMC genomics, 19(1), 1-9.
Mokhber, M., Moradi Shahre Babak, M., Sadeghi, M., Moradi Shahrbabak, H., & Rahmani-Nia, J. (2019). Estimation of effective population size of Iranian water buffalo by genomic data. Iranian Journal of animal Science, 50(3), 197-205. (In Persian)
Moradi Shahrebabak, H., Biabani, P., Mehrbani Yeganeh, H., & Mokhber, M. (2023). Investigating the genetic diversity of Iranian native and Holstein cattle breeds using genomic data. Animal Sciences Journal, 36(138), 87-98. (In Persian)
Moradi, M. H., Nejati-Javaremi, A., Moradi-Shahrbabak, M., Dodds, K. G. & McEwan, J. C. (2012). Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genetics, 13, 10.
Nicolazzi EL, Caprera A, Nazzicari N, Cozzi P, Strozzi F, Lawley C, et al. SNPchiMp v. 3: integrating and standardizing single nucleotide polymorphism data for livestock species. BMC Genomics. 2015;16:283.
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, P., de Bakker, P .I. W., Daly, M. J. & Sham, P. C. (2007). PLINK: a toolset for whole-genome association and population-based linkage analysis. The American Journal of Human Genetics, 81, 559–575.
Qanbari, S., Pausch, H., Jansen, S., Somel, M., Strom, T. M. & et al. (2014). Classic Selective Sweeps Revealed by Massive Sequencing in Cattle. PLoS Genetics, 10(2), e1004148. doi:10.1371/journal.pgen.1004148
Qanbari, S., Strom, T. M., Haberer, G., Weigend, S., Gheyas, A. A. & et al. (2012) A High Resolution Genome-Wide Scan for Significant Selective Sweeps: An Application to Pooled Sequence Data in Laying Chickens. PLoS ONE, 7(11), e49525. doi:10.1371/journal.pone.0049525.
R version 4.1.3 [computer software]. (2013). http:// www.r-project.org/.
Rahimmadar, S., Ghaffari, M., Mokhber, M., & Williams, J. L. (2021). Linkage disequilibrium and effective population size of buffalo populations of Iran, Turkey, Pakistan, and Egypt using a medium density SNP array. Frontiers in Genetics, 12, 608186.
Sabeti, P. C., Reich, D. E., Higgins, J. M., Levine, H. Z. P., Richter, D. J., Schaffner, S. F., Gabriel, S. B., Platko, J. V., Patterson, N. J., McDonald, G. J. & et al. (2002). Detecting recent positive selection in the human genome from Haplotype structure. Nature, 419, 832-837.
Salehi, R., Javanmard, A., Mokhber, M., & Alijani, S. (2023). Genomic Selection Signatures in Two French and Swedish Holstein Cattle Breeds Provide Evidence for Several Potential Candidate Genes Linked to Economic Traits. Iranian Journal of Applied Animal Science, 13(4), 677-684.
Shi, S., Shao, D., Yang, L., Liang, Q., Han, W., Xue, Q., ... & Tong, H. (2023). Whole genome analyses reveal novel genes associated with chicken adaptation to tropical and frigid environments. Journal of Advanced Research, 47, 13-25.
Simianer, H., Ma, Y. & Qanbari, S. (2014). Statistical problems in livestock population genomics. Proccedings 10th Congress of Genetics Applied to Livestock Production, 17-22 August., Vancouver, BC, Canada.
Strillacci, M. G., Moradi-Shahrbabak, H., Davoudi, P., Ghoreishifar, S. M., Mokhber, M., Masroure, A. J., & Bagnato, A. (2021). A genome-wide scan of copy number variants in three Iranian indigenous river buffaloes. BMC genomics, 22(1), 1-14.
Teo, Y. Y., Fry, A. E., Clark, T. G., Tai, E. S. & Seielstad, M. (2007). On the usage of HWE for identifying genotyping errors. Annals of Human Genetics, 71, 701-703.
Turner, S.D. 2014. QQman: An R package for visualizing GWAS results using Q-Q and manhattan plots. bioRxiv, 5165.
Wang, G., Wang, F., Pei, H., Li, M., Bai, F., Lei, C., & Dang, R. (2022). Genome-wide analysis reveals selection signatures for body size and drought adaptation in Liangzhou donkey. Genomics, 114(6), 110476.
Wang, Z. H., Zhu, Q. H., Li, X., Zhu, J. W., Tian, D. M., Zhang, S. S., ... & Li, M. H. (2021). iSheep: an integrated resource for sheep genome, variant and phenotype. Frontiers in Genetics, 12, 714852.
Weir, B. S. & Cockerham, C. C. 1984. Estimating F-statistics for the analysis of population structure. International Journal of Evolution, 38: 1358–1370.
Wolfová, M., Wolf, J., Krupová, Z., & Margetín, M. (2009). Estimation of economic values for traits of dairy sheep: II. Model application to a production system with one lambing per year. Journal of dairy science, 92(5), 2195-2203.
Xu, S. S., Gao, L., Xie, X. L., Ren, Y. L., Shen, Z. Q., Wang, F., ... & Li, M. H. (2018). Genome-wide association analyses highlight the potential for different genetic mechanisms for litter size among sheep breeds. Frontiers in genetics, 9, 118.
Yang, S., Li, X., Li, K., Fan, B. & Tang, Z. (2014). A genome-wide scan for signatures of selection in Chinese indigenous and commercial pig breeds.
BMC Genetics, 15(7), 9. from
http://www.biomedcentral.com/1471-2156/15/7.
Yazawa, T., Imamichi, Y., Sekiguchi, T., Miyamoto, K., Uwada, J., Khan, M. R. I., ... & Taniguchi, T. (2019). Transcriptional regulation of ovarian steroidogenic genes: recent findings obtained from stem cell-derived steroidogenic cells. BioMed Research International, 2019.
Zandi, M. B., Salek Ardestani, S., Vahedi, S. M., Mahboudi, H., Mahboudi, F., & Meskoob, A. (2022). Detection of Common Copy Number of Variants Underlying Selection Pressure in Middle Eastern Horse Breeds Using Whole-Genome Sequence Data. Journal of Heredity, 113(4), 421-430.
Zhao, F.P., Wei, C.H., Zhang, L., Liu, J.S., Wang, G.K., Tao, Z.E.N.G. and Du, L.X. (2016). A genome scan of recent positive selection signatures in three sheep populations. Journal of Integrative Agriculture, 15(1): 162-174.