اثرات مکمل سازی جیره با منابع مختلف اوره بر نرخ آزاد سازی نیتروژن، کینتیک تخمیر، فراسنجه های تولید گاز و ناپدید شدن مادۀ مغذی در شرایط برونتنی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

2 گروه علوم دامی، دانشکده کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران.

3 گروه علوم دامی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

چکیده

هدف از این آزمایش، بررسی اثرات مکمل­سازی جیره با منابع مختلف اوره بر نرخ آزادسازی نیتروژن، کنتیک تخمیر، فراسنجه­های تولید گاز و ناپدید شدن مادۀ مغذی در شرایط برون­تنی بود. برای این منظور چهار جیره آزمایشی شامل 1) جیره بدون منبع اوره [شاهد]؛ 2) جیره حاوی 38/0 درصد مادۀ خشک اوره معمولی؛ 3) جیره حاوی 43/0 درصد مادۀ خشک اوره آهسته رهش ابداعی؛ 4) جیره حاوی 86/0 درصد مادۀ خشک اوره آهسته رهش ابداعی تنظیم گردید. انحلال­پذیری اوره آهسته رهش ابداعی (SRU Lab) در آب مقطر، بافر فسفات و بافر مکدوگال- شیرابه شکمبه در سری زمانی 0، 60، 120، 180، 240، 300، 360، 420 و 480 دقیقه توسط روش فتومتریک تعیین شد. کینتیک تخمیر، فراسنجه­های تولید گاز 96 ساعته و ناپدید شدن مادۀ مغذی در سری زمانی 4، 8، 12، 24، 48 ساعت با استفاده از آزمون تولید گاز اصلاح یافته برآورد شد. نتایج نشان داد انحلال­پذیری اوره در محلول­های بافری برای SRU Lab نسبت به اپتی­ژن تجاری، کم و با شیب ملایم بود. اما انحلال­پذیری اوره در آب مقطر برای SRU Lab، مشابه با اپتی­ژن بود. نتایج تولید گاز 24 ساعته برای جیره­های حاوی SRU Lab نسبت به جیره حاوی اوره معمولی افزایش معنی­داری داشت (P≤0.001). ماده آلی تجزیه‌شده برای جیره شاهد و جیره حاوی SRU Lab نسبت به جیره حاوی اوره معمولی به­طور معنی­دار بیشتر بود (P≤0.05). بیشترین مقدار شاخص بخش­پذیری برای جیره­های حاوی 43/0 درصد ماده خشک SRU Lab و جیره شاهد بود. بیش از 50 درصد میزان ناپدید شدن مادۀ خشک جیره­های آزمایشی بعد از 12 ساعت انکوباسیون رخ داد. گوارش­پذیری مادۀ خشک 24 ساعته جیره­های حاوی SRU Lab نسبت به اوره معمولی به‌صورت معنی­دار بیشتر بود (P≤0.01). به‌طور معنی­دار تغییرات گوارش­پذیری پروتئین خام در ساعات اولیه انکوباسیون تحت تأثیر جیره­های دارای SRU Lab قرار گرفت، اما تغییرات گوارش­پذیری فیبر نامحلول در شوینده خنثی معنی­دار نبود (P≥0.05). با گذشت ساعات انکوباسیون، درصد گوارش­پذیری NDF و CP در جیره حاوی 43/0 درصد SRU Lab نسبت به جیره شاهد اختلاف معنی­داری نداشت، اما با افزایش غلظت مصرف SRU Lab  (جیره چهارم) تغییرات معنی­دار و زیاد بود (P≤0.001). به­طور کلی محصول SRU Lab از نظر نرخ آزادسازی اوره در انواع محلول­های بافری نسبت به اپتی­ژن آهسته­تر بود. افزودن SRU Lab به جیره­های آزمایشی نسبت به اوره معمولی تاثیر نامطلوبی بر گوارش­پذیری برون­تنی مواد مغذی، روند تولید گاز و سایر فراسنجه­های اندازه­گیری شده نداشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluating the effects of dietary supplementation with different sources of urea on nitrogen release rate, fermentation kinetics, gas production parameters and nutrient disappearance rate in Vitro

نویسندگان [English]

  • Kian Sadeghi 1
  • Mahdi Ganjkhanlou 2
  • Mehdi Dehghan banadaky 1
  • Mostafa Sadeghi 1
  • Abolfazl Zali 1
  • Akbar Tagizadeh 3
1 Department of Animal Sciences, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
2 Department of Animal Sciences, Faculty of Management, University of Tehran, Tehran, Iran
3 Department of Animal Science, Faculty of Agriculture, University of Tabriz, Iran
چکیده [English]

The purpose of this experiment was to evaluate the effects of supplementing the diet with different sources of urea on the rate of nitrogen release, fermentation kinetics, gas production parameters and nutrient disappearance rate in vitro. For this purpose, four experimental rations included 1) ration without urea source [control]; 2) diet containing 0.38% of DM of Uncotaed Urea; 3) ration containing 0.43% DM of SRU Lab; 4) The ration containing 0.86% DM of SRU Lab were formulated. Solubility of slow release urea (SRU Lab) in distilled water, phosphate buffer and McDougall buffer-ruminal fluid in 9 time series  of 0, 60, 120, 180, 240, 300, 360, 420 and 480 minutes was determined using photometric method. Fermentation kinetics, 96-hour gas production parameters, and nutrient disappearance in the time series of 4, 8, 12, 24, 48 hours were estimated using the modified gas production test. The results showed that the solubility of urea in buffer solutions for SRU Lab was low and with a gentle slope compared to commercial optigen. But the solubility of urea in distilled water for SRU Lab was similar to Optigen. The results of 24-hour gas production for diets containing SRU Lab increased significantly (P≤0.001) compared to diets containing uncotaed urea. The digested organic matter for the control diet and the diet containing SRU Lab was significantly higher than the diet containing uncotaed urea (P≤0.05). The highest amount of PF was for diets containing 0.43% DM of SRU Lab and control diet. More than 50% of dry matter disappearance rate of experimental diets occurred after 12 hours of incubation. The 24-hour dry matter digestibility of diets containing SRU Lab was significantly higher than uncotaed urea (P≤0.01). Changes in CP digestibility in the first hours of incubation were significantly affected by diets containing SRU Lab, but changes in digestibility of NDF were not significant (P≥0.05). Percentage of digestibility of NDF and CP in the diet containing 0.43% of SRU Lab compared to the control diet was not significantly different over the times of incubation, but with the increase in the concentration of SRU Lab (fourth diet) the changes were significant and high (P≤0.001). In general, the SRU Lab product was slower than Optigen in terms of urea release rate in various buffer solutions. The addition of SRU Lab to the experimental diets did not have an adverse effect on the in vitro digestibility of nutrients, gas production trends and other measured parameters compared to uncotaed urea.

کلیدواژه‌ها [English]

  • slow-release urea
  • non-protein nitrogen
  • digestion kinetics
  • nutrient disappearance rate
  • gas production technique

Extended Abstract

Introduction

    Dietary protein plays an important role in ruminant nutrition for providing amino acids and the nitrogen (N) source for microbial protein production in rumen. However, the dietary protein is an expensive feed ingredient, thus a strategy to reduce feed cost without negative impact on animal production needs to be considered. Using slow-release urea (SRU) as a rapidly digestible N source with fermentable energy to support microbial protein synthesis in rumen is the primary purpose. Therefore, the addition of SRU in the diet of ruminants is important not only for providing N sources, but also for the diversity and ruminal microbial population. Considering the importance of this object, the present study was carried out in order to evaluate the effects of supplementing the diet with different sources of urea on nitrogen release rate, fermentation kinetics, gas production parameters and nutrient disappearance rate in vitro.

Materials and methods

Four experimental rations included 1) ration without urea source [control]; 2) diet containing 0.38% of DM of Uncotaed Urea; 3) ration containing 0.43% DM of SRU Lab; 4) The ration containing 0.86% DM of SRU Lab were formulated. Solubility of slow release urea (SRU Lab) in buffer solutions of distilled water , phosphate buffer and McDougall buffer-ruminal fluid in 9 time series of  0, 60, 120, 180, 240, 300, 360, 420 and 480 minutes was determined using photometric method. Fermentation kinetics, 96-hour gas production parameters, and nutrient disappearance in the time series of 4, 8, 12, 24, 48 hours were estimated using the modified gas production test.

 

Results and discussion

    The results showed that the solubility of urea in buffer solutions for SRU Lab was low, with a gentle slope compared to commercial Optigen. But the solubility of urea in distilled water for SRU Lab was similar to Optigen. The results of 24-hour gas production for diets containing SRU Lab increased significantly (P≤0.001) compared to diets containing uncotaed urea. The digested organic matter for the control diet and the diet containing SRU Lab was significantly higher than the diet containing uncotaed urea (P≤0.05). The highest amount of PF was for diets containing 0.43% DM of SRU Lab and control diet. More than 50% of dry matter disappearance rate of experimental diets occurred after 12 hours of incubation. The 24-hour dry matter digestibility of diets containing SRU Lab was significantly higher than uncotaed urea (P≤0.01). Changes in CP digestibility in the first hours of incubation were significantly affected by diets containing SRU Lab, but changes in digestibility of NDF were not significant (P≥0.05). Percentage of NDF digestibility  and CP in the diet containing 0.43% of SRU Lab compared to the control diet was not significantly different, but with the increase in the concentration of SRU Lab (fourth diet) the changes were significant and high (P≤0.001).

 

Conclusions

    In general, the SRU Lab product was slower than Optigen in terms of urea release rate in various buffer solutions. The addition of SRU Lab to the experimental diets did not have an adverse effect on the in vitro digestibility of nutrients, gas production trends and other measured parameters compared to uncotaed urea.

Author Contributions

Kian Sadeghi and Mehdi Ganjkhanlou contributed to the project idea, design and execution of the study. Mostafa Sadeghi, Abolfazl Zali and Akbar Taghizadeh were in charge of laboratory analyses. Mehdi Ganjkhanlou and Mehdi Dehghan Bonadaki were responsible for writing the manuscript. Kian Sadeghi and Mehdi Ganjkhanlou was responsible for re-writing, scientific editing and finalizing the manuscript. Mostafa Sadeghi was responsible for Software, Validation the manuscript

Data Availability Statement

The data that support the findings of this study are available from the corresponding authors, upon reasonable request.

Acknowledgements

The authors would like to thank all participants of the present study.

Ethical considerations

The study was approved by the Ethics Committee of the University of ABCD (Ethical code: IR.UT.RES.2024.500). The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

REFERENCES
Alipour, D., Saleem, A. M., Sanderson, H., Brand, T., Santos, L. V., Mahmoudi-Abyane, M. ... & McAllister, T. A. (2020). Effect of combinations of feed-grade urea and slow-release urea in a finishing beef diet on fermentation in an artificial rumen system. Translational Animal Science, 4(2), 839-847.
Azizi, A., Sharifi, A., & Fazaeli, H. (2019). Effect of one produced slow-release urea component on gas production, fermentation, nutrient disappearance and activity of microbial enzymes using rumen liquor of sheep. Animal Sciences Journal, 32(122), 279-290.
Azizi-Shotorkhoft, A., Sharifi, A., Azarfar, A., & Kiani, A. (2018). Effects of different carbohydrate sources on activity of rumen microbial enzymes and nitrogen retention in sheep fed diet containing recycled poultry bedding. Journal of Applied Animal Research, 46(1), 50-54. In Persian ‏
Beig, B., Niazi, M.B.K., Jahan, Z., Hussain, A., Zia, M.H. and Mehran, M.T. (2020). Coating materials for slow release of nitrogen from urea fertilizer: A review. Journal of plant nutrition, 43(10), pp.1510-1533.
Blümmel, M., Makkar, H. P. S., & Becker, K. (1997). In vitro gas production: a technique revisited. Journal of animal physiology and animal nutrition, 77(1‐5), 24-34.
Broderick, G.A. and Kang, J.H., 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of dairy science, 63(1), pp.64-75.
Calomeni, G. D., Gardinal, R., Venturelli, B. C., Freitas Júnior, J. E. D., Vendramini, T. H. A., Takiya, C. S. ... & Rennó, F. P. (2015). Effects of polymer-coated slow-release urea on performance, ruminal fermentation, and blood metabolites in dairy cows. Revista Brasileira de Zootecnia, 44, 327-334.
Ceconi, I., Ruiz-Moreno, M. J., DiLorenzo, N., DiCostanzo, A., & Crawford, G. I. (2015). Effect of slow-release urea inclusion in diets containing modified corn distillers grains on total tract digestibility and ruminal fermentation in feedlot cattle. Journal of Animal Science, 93(8), 4058-4069.
Chalupa, W. (2007). Precision feeding of nitrogen to lactating dairy cows: a role for Optigen® II. In Nutritional Biotechnology in the Feed and Food Industries: Proceedings of Alltech's 23rd Annual Symposium. The New Energy Crisis: Food, Feed or Fuel? (pp. 221-226). Alltech UK.
Chegeni, A., Li, Y. L., Deng, K. D., Jiang, C. G., & Diao, Q. Y. (2013). Effect of dietary polymer-coated urea and sodium bentonite on digestibility, rumen fermentation, and microbial protein yield in sheep fed high levels of corn stalk. Livestock Science, 157(1), 141-150.
Cherdthong, A., & Wanapat, M. (2014). In vitro gas production in rumen fluid of buffalo as affected by urea‐calcium mixture in high‐quality feed block. Animal Science Journal, 85(4), 420-426.
Cherdthong, A., Wanapat, M., & Wachirapakorn, C. (2011). Effects of urea–calcium mixture in concentrate containing high cassava chip on feed intake, rumen fermentation and performance of lactating dairy cows fed on rice straw. Livestock Science, 136(2-3), 76-84.
Ferme, D., Banjac, M., Calsamiglia, S., Busquet, M., Kamel, C., & Avguštin, G. (2004). The effects of plant extracts on microbial community structure in a rumen-simulating continuous-culture system as revealed by molecular profiling. Folia Microbiologica, 49, 151-155.
Galo, E., Emanuele, S. M., Sniffen, C. J., White, J. H., & Knapp, J. R. (2003). Effects of a polymer-coated urea product on nitrogen metabolism in lactating Holstein dairy cattle. Journal of Dairy Science, 86(6), 2154-2162.
Golombeski, G. L., Kalscheur, K. F., Hippen, A. R., & Schingoethe, D. J. (2006). Slow-release urea and highly fermentable sugars in diets fed to lactating dairy cows. Journal of dairy science, 89(11), 4395-4403.
Gonçalves, A. P., Nascimento, C. F. M. D., Ferreira, F. A., Gomes, R. D. C., Manella, M. D. Q., Marino, C. T., ... & Rodrigues, P. H. M. (2015). Slow-release urea in supplement fed to beef steers. Brazilian Archives of Biology &Technology, 58, 22-30.
Guo, Y., Xiao, L., Jin, L., Yan, S., Niu, D., & Yang, W. (2022). Effect of commercial slow-release urea product on in vitro rumen fermentation and ruminal microbial community using RUSITEC technique. Journal of Animal Science & Biotechnology, 13(1), 56.
Harrison, G. A., Meyer, M. D., & Dawson, K. A. (2008). Effect of Optigen and dietary neutral detergent fiber level on fermentation, digestion, and N flow in rumen-simulating fermenters. Journal of Dairy Science, 91(Suppl 1), 489.
Huntington, G. B., Harmon, D. L., Kristensen, N. B., Hanson, K. C., & Spears, J. W. (2006). Effects of a slow-release urea source on absorption of ammonia and endogenous production of urea by cattle. Animal Feed Science & Technology, 130(3-4), 225-241.
Mazinani, M., Naserian, A. A., Danesh Mesgaran, M., & Valizadeh, R. (2019). Determination of coated urea releasing in ruminant’s rumen through in vivo and in vitro studies. Iranian Journal of Animal Science Research, 11(2), 179-193. In Persian
Olivera, R. M. P. (1998). Use of in vitro gas production technique to assess the contribution of both soluble and insoluble fractions on the nutritive value of forages. A thesis to the University of Aberdeen, Scotland, in partial fulfillment of the degree of Master of Science in animal nutrition. (PP. 56-62).
Ørskov ER, McDonald I. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. The Journal of Agricultural Science. 92(2):499-503.
Ottenstein D and Bartley D. 1971. Improved gas chromatography separation of free acids C2-C5 in dilute solution. Analytical Chemistry. 43(7):952-955.
Parnian-Khajehdizaj, F., Taghizadeh, A., Hosseinkhani, A., & Mesgaran, M. D. (2018). Evaluation of dietary supplementation of B vitamins and HMBI on fermentation kinetics, ruminal or post-ruminal diet digestibility using modified in vitro techniques. Journal of BioScience & Biotechnology, 7(2-3), 125-133.
Ran, T., Jin, L., Abeynayake, R., Saleem, A. M., Zhang, X., Niu, D. ... & Yang, W. (2021). Effects of brewers’ spent grain protein hydrolysates on gas production, ruminal fermentation characteristics, microbial protein synthesis and microbial community in an artificial rumen fed a high grain diet. Journal of Animal Science & Biotechnology, 12(1), 1-14.
Salami, S. A., Moran, C. A., Warren, H. E., & Taylor-Pickard, J. (2020). A Meta-Analysis of the Effects of Slow-Release Urea Supplementation on the Performance of Beef Cattle. Animals, 10(4), 657.
Spanghero, M., Nikulina, A., & Mason, F. (2018). Use of an in vitro gas production procedure to evaluate rumen slow-release urea products. Animal Feed Science & Technology, 237, 19-26.
Tang, J. W., Mu, R. Z., Zhang, B. L., & Fan, X. S. (2007). Solubility of urea phosphate in water+ phosphoric acid from (277.00 to 354.50) K. Journal of Chemical & Engineering Data, 52(4), 1179-1181.
Taylor-Edwards, C. C., Elam, N. A., Kitts, S. E., McLeod, K. R., Axe, D. E., Vanzant, E. S., ... & Harmon, D. L. (2009). Influence of slow-release urea on nitrogen balance and portal-drained visceral nutrient flux in beef steers. Journal of Animal Science, 87(1), 209-221.
Tedeschi, L. O., Baker, M. J., Ketchen, D. J., & Fox, D. G. (2002). Performance of growing and finishing cattle supplemented with a slow-rlease urea product and urea. Canadian Journal of Animal Science, 82(4), 567-573.
Tikofsky, J., & Harrison, G. A. (2006). Optigen® II: Improving the efficiency of nitrogen utilization in the dairy cow. Nutritional Biotechnology in the Feed and Food Industries: Proceedings of Alltech's 22nd Annual Symposium, Lexington, Kentucky, (pp. 373-380). Alltech UK.
Trei, J., Hale, W. H., & Theurer, B. (1970). Effect of grain processing on in vitro gas production. Journal of Animal Science, 30(5), 825-831.
Xin, H. S., Schaefer, D. M., Liu, Q. P., Axe, D. E., & Meng, Q. X. (2010). Effects of polyurethane coated urea supplement on in vitro ruminal fermentation, ammonia release dynamics and lactating performance of Holstein dairy cows fed a steam-flaked corn-based diet. Asian-Australasian Journal of Animal Sciences, 23(4), 491-500.
Yamamoto, C. F., Pereira, E. I., Mattoso, L. H., Matsunaka, T., & Ribeiro, C. (2016). Slow release fertilizers based on urea/urea–formaldehyde polymer nanocomposites. Chemical Engineering Journal, 287, 390-397.
Yan, X. T., Yan, B. Y., Ren, Q. M., Dou, J. J., Wang, W. W., Zhang, J. J., ... & Qiu, Q. (2018). Effect of slow-release urea on the composition of ruminal bacteria and fungi communities in yak. Animal Feed Science & Technology, 244, 18-27.
Zhou, Z., Meng, Q., Li, S., Jiang, L., & Wu, H. (2017). Effect of urea-supplemented diets on the ruminal bacterial and archaeal community composition of finishing bulls. Applied Microbiology & Biotechnology, 101, 6205-6216.