اثر سطح انرژی و تراکم گله بر عملکرد رشد، شاخص‌های بیوشیمیایی خون، ریخت‌شناسی روده و کیفیت گوشت جوجه گوشتی آرین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران

2 گروه علوم دامی ، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران.

3 گروه علوم دامی، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران.

4 گروه علوم دامی مرکز تحقیقات، آموزش کشاورزی و منابع طبیعی استان گلستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، گرگان، ایران

چکیده

هدف از مطالعه حاضر بررسی تأثیر سطح انرژی (EL) قابل سوخت و ساز و تراکم در واحد سطح بر عملکرد، شاخص­های خونی، ریخت­شناسی ژژنوم و کیفیت گوشت جوجه­های گوشتی آرین بود. در این پژوهش از تعداد 672 قطعه جوجه گوشتی آرین ترکیب دوجنس در قالب طرح کاملاً تصادفی با آرایش فاکتوریل 4×2 شامل دو سطح تراکم (12، 16 پرنده در متر مربع) و چهار سطح انرژی (EL1: سطح انرژی توصیه شده آرین، EL2: 5/3 درصد انرژی بیشتر در دوره پایانی 2، EL3: 5/3  درصد انرژی بالاتر در تمام دوره­ها، EL4: 5/3 درصد انرژی بالاتر در دوره آغازین، رشد و پایانی1 و 1/6 درصد انرژی بالاتر در پایانی 2) با 8 تیمار و 6 تکرار استفاده شد. نتایج نشان داد سطح انرژی توصیه شده آرین در شرایط تراکم جمعیت، کمترین مقدار افزایش وزن بدن را در دوره پایانی 2 (42-36 روزگی) و کل دوره (1-42 روزگی) و بالاترین ضریب تبدیل خوراک در دوره پایانی 2 را داشت (001/0>P). افزایش سطح انرژی (EL3) باعث کاهش مصرف خوراک در دوره پایانی2 گردید (05/0P<). افزایش سطح انرژی باعث افزایش بازده لاشه، وزن نسبی سینه و چربی محوطه شکمی گردید (05/0P<). در شرایط تراکم بالا EL2 نسبت به EL1 موجب افزایش وزن نسبی قلب گردید. همچنین، EL3 موجب افزایش غلظت لیپوپروتئن با چگالی پایین و آلانین­آمینوترانسفراز گردید. افزایش تراکم باعث کاهش غلظت آلبومین و پروتئین کل، لیپوپروتئن با چگالی بالا و افزایش فعالیت سوپراکسیددیسموتاز و گلوتاتیون­پراکسیداز گردید (05/0P<). کمترین ارتفاع پرز مربوط به تیمارEL1 درشرایط تراکم بالای جمعیت بود و بیشترین ارتفاع پرز در گروه EL4 در شرایط تراکم پایین مشاهده شد (05/0P<). افزایش سطح انرژی باعث افزایش عرض پرز، نسبت ارتفاع پرز به عمق کریپت (VH/CD) و ناحیه جذبی گردید (05/0P<). تراکم بالای جمعیت ارتفاع و عرض پرز، VH/CD و سطح جذب پرز را کاهش داد (05/0P<). برهم­کنش سطح انرژی و تراکم جمعیت بر هیچ یک از شاخص­های کیفیت گوشت تأثیر نداشت. در کل یافته­های پژوهش حاضر نشان داد در کل دوره پرورش تفاوت معنی­داری بین تراکم گله 12 و 16 پرنده در مترمربع نمی­باشد، اما در هفته آخر پرورش تراکم بالا موجب کاهش روند رشد گردید و تاثیر منفی بر ضریب تبدیل خوراک داشت، که با افزایش 5/3 درصد سطح انرژی در دوره پایانی 2، موجب بهبود عملکرد جوجه­های گوشتی آرین شد. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of energy levels and stocking density on growth performance, blood indices, intestinal morphology, and meat quality in Arian broiler chicken

نویسندگان [English]

  • Kamran Bahrampour 1
  • Seyyed Javad Hosseini-Vashan 1
  • Nazar Afzali 2
  • Mohammad Salarmoeini 3
  • Kazem Yosefi 4
1 Department of Animal Science, College of Agriculture and Natural Recourse, University of Birjand, Birjand, Iran.
2 Department of Animal Science, College of Agriculture and Natural Recourse, University of Birjand, Birjand, Iran
3 Department of Animal Science, College of Agriculture, Shahid Bahonar University of Kerman, Iran
4 Department of Animal Science Research, Golestan Agricultural and Natural Resources Research and Education Center, AREEO, Gorgan, Iran
چکیده [English]

The aim of the present study was to evaluate the effect of dietary metabolizable energy levels (EL) and stocking density (SD) on growth performance, blood indices, jejunal morphology and meat quality in Arian broiler chickens. A total of 672 Arian one-day-old chicks were used in a completely randomized design with 2×4 factorial arrangement, including two stocking density (12, 16 birds/m2) and four energy levels (EL1: Arian recommendation energy level, EL2: 3.5% higher energy level for finisher2, EL3: 3.5% higher energy level for all periods, EL4: 3.5% higher starter, grower and finisher1 and 6.1% higher energy level for finisher2) with eight treatments and six replicates. The results showed that recommendation Arian catalogue energy level with 16 birds/m2 decreased body weight gain in the finisher2 (42-36 days) and the whole period (1-42 days) and had highest feed conversion ratio in the finisher2 (P<0.001). Increased energy level (EL3) significantly decreased feed intake in finisher2 period. The carcass efficiency, breast relative weight and abdominal fat as increased as energy levels enhanced. In HSD, EL2 compared to EL3 increased relative weigh of heart. Also, EL3 increased low-density lipoprotein and alanine transaminase concentration in HSD. Concentration of albumin, total protein and high-density lipoprotein were decreased by stock density, on the contrary, Superoxide dismutase and glutathione peroxidase increased (P<0.05). The lowest height of villi was related to EL1 in HSD, and the highest villi height was observed in EL4 and low stock density. High energy level increased the villus width, the ratio of the villus height to the crypt depth (VH/CD) and the absorption area (P<0.05). HSD significantly reduced villus height and width, VH/CD and absorption area of villus (P<0.05). The interaction of energy level and SD did not affect any of the meat quality indicators. Furthermore, the findings of the present study showed there is no significant difference between 12 and 16 birds/m2 during the whole of period. The HSD decreased the growth performance and had a negative effect on the feed conversion ratio, whereas improved the performance of Arian broiler chickens when increased the energy level by 3.5% in the finisher 2.  

کلیدواژه‌ها [English]

  • Arian
  • Broiler
  • Energy
  • Stock density
  • Meat quality

Extended Abstract

Introduction

During a rearing period, choosing the appropriate density per unit area is an important to achieve the maximum possible profit. However if the chicken density increases too much, it will cause stress in and have a negative effects on the growth of birds. In the stress condition, the maintain requirement of the bird is increase. Therefore, the aim of this research was to investigate the effect of increasing the energy level of Arian broiler chickens in high stock (HSD) density on growth performance, blood indices, intestinal morphology and meat quality.

 

Materials and Methods

In order to investigate the effect of Arian broiler chickens to different energy level in high stock density, an experiment was carried out in the form of a completely randomized with 2×4 factorial arrangement, including two  stock density (12, 16 birds/m2) and four energy levels (EL1: Control (Arian recommendation: 2870-2950-3025-3025 kcal/kg for starter, grower, finisher1 and finisher2), EL2: 3.5% higher energy level for finisher2 (2870-2950-3025-3125 kcal/kg for starter, grower, finisher1 and finisher2), EL3: 3.5% higher for all periods (2970-3050-3125-3125 kcal/kg for starter, grower, finisher1 and finisher2), EL4: 3.5% higher starter, grower and finisher1 and 6.1% higher in finisher2 (2970-3050-3125-3200 kcal/kg for starter, grower, finisher1 and finisher2) with eight treatments and six replicates. Body weight gain (BWG) and feed intake (FI) were measured and feed conversion ratio (FCR) was calculated. At day 42, two broiler chicken was randomly selected, and after blood sampling slaughtered for carcass traits and meat quality. The left thigh was removed and used for meat quality test including water holding capacity, pH and Malondialdehyde concentration. To study the histomorphology of the intestine, approximately 4 cm long segment were separated from before Meckel’s diverticulum. Data were subjected to an analysis of variance (ANOVA) using the General Linear Model (GLM) in the Minitab statistical software (Minitab 16). Analysis of variance was performed using a completely randomized design with a factorial arrangement of treatments. Statistical significance was considered at P<0.05.

 

Results

The results showed that the interaction of EL and SD on FI was not significant in any period (P>0.05). Using the EL1 in HSD, had the highest FCR in the finisher2 (P<0.001), and also had the lowest amount of BWG in the finisher2 (36-42 days) and the whole period of rearing (P<0.05) . The main effects showed that HSD significantly decreased feed consumption in the whole period (P<0.05) and increase in energy level (EL3 compared to EL1) decreased FI in the finisher2 (P<0.05). Compared to EL1, EL2 significantly increase carcass efficiency and relative weight of breast, liver, and spleen (P<0.05). HSD decreased the relative weight of Bursa Fabricius compared to low density (P<0.05). The lowest relative weight of the heart was observed for EL1 and HSD, and the highest relative weight was related to EL2 and HSD. Increasing the density (16 birds compared to 12 birds per square meter) decreased the concentration of Alb and total TP. The interaction effect of EL and SD on the TP concentration was significant (P>0.05) and EL2 had the highest total protein concentration in blood serum under low stock density. In HSD, EL2 compared to EL3 decreased blood low-density lipoprotein (LDL) concentration. The effect of different EL2 significantly increased Chol, TG and HDL concentrations. SD had no significant effect on Chol and TG (P>0.05), but it caused a decrease in HDL. The interaction effect of energy levels and population density shows that EL3 significantly increased LDL compared to EL2 at HSD (P<0.05). The use of EL2 diet increased the activity of aspartate aminotransferase (AST) enzyme (P<0.05). Also, EL2 and 16 birds/m2 increased the activity of ALT enzyme (P<0.05). The interaction effect of EL and SD had no significant effect on the antioxidant index (P>0.05). But main effect showed increasing EL, significantly increased glutathione peroxidase (GPX) activity (P<0.05). Also, High stock density increased SOD and GPX enzyme activity (P<0.05). The lowest height of villi was related to EL1 in HSD, and the highest villi height was observed in EL4 and low stock density. Hight energy level increased the villus width, the ratio of the villus height to the crypt depth (VH/CD) and the absorption area (P<0.05). HSD significantly reduced villus height and width, VH/CD and absorption area of villus (P<0.05). The interaction of EL and SD did not affect none of the meat quality indicators. The main effects of energy level show that EL2 increased WHC compared to EL4 MDA concentration of meat increased in HSD (P<0.05).

 

Conclusion

Therefore, the results of this research showed that the recommended ration of Arian catalog and the use of 16 birds/m2 compared to 12 birds, caused a decrease in body weight in the finisher2 (36-42 days) and the entire period and increased the feed conversion ratio in the finisher2 in Arian broiler chickens. Increasing energy in other treatments prevented the decreasing trend of body weight gain. The increase in energy in the finisher2 and the increase in density in the whole period decreased feed intake. In the entire breeding period, the density of 12 and 16 bird/m2 did not have a significant difference, and it can be suggested to breeders to use a density of 16 birds in order to obtain more profit.

  1. زمانی، پویا؛ زرافروز، فریبرز و رضایزدی، کامران (1380). مقایسه اثر سطوح مختلف انرژی متابولیسمی و پروتئین خام جیره بر عملکرد جوجه های گوشتی آرین. علوم و صنایع کشاورزی  (1385)، دوره (20)، شماره (2) صفحه (3-14).

    ظهیرالدینی، همایون؛ میرایی آشتیانی، سیدرضا، شیوازاد، محمود و نیکخواه، علی (1380). اثر غلظت انرژی و مواد مغذی جیره برعملکرد جوجه های آمیخته گوشتی آرین. نشریه تولید و فرآوری محصولات زراعی و باغی، ۵ (۲)، ۱۲۵-۱۳۵.

    کاظمی، ماهان و ایلا، نیما (1400). تعیین سطح بهینه انرژی قابل متابولیسم جیره‌های غذایی جوجه‌های گوشتی راس 308. دانش و پژوهش علوم دامی، 1400(1)، 45-57.

    کریمی، مصیب؛ اسماعیلی­پور، امیدعلی، مظهری، مژگان و دوماری، حسین (1401). تأثیر آویشن خشک شده بر عملکرد، متابولیت‌های خون و کیفیت گوشت جوجه‌های گوشتی در تراکم بالای پرورش. پژوهش­های علوم دامی ایران. doi: 10.22067/ijasr.2022.78413.1097.

    REFERENCES

    1. Ahmed-Farid, O., Salah, A. S., Nassan, M. A., & El-Tarabany, M. S. (2021). Effects of chronic thermal stress on performance, energy metabolism, antioxidant activity, brain serotonin, and blood biochemical indices of broiler chickens. Animals, 11(9), 2554.

    Abdullah, A. Y., & Musallam, H. S. (2007). Effect of different levels of energy on carcass composition and meat quality of male black goats kids. Livestock Science, 107(1), 70-80.

    Abudabos, A. M., Saleh, F., Lemme, A., & Zakaria, H. A. (2014). The relationship between guanidino acetic acid and metabolisable energy level of diets on performance of broiler chickens. Italian Journal of Animal Science, 13(3), 3269.

    Abudabos, A. M., Samara, E. M., Hussein, E. O., Al-Ghadi, M. a. Q., & Al-Atiyat, R. M. (2013). Impacts of stocking density on the performance and welfare of broiler chickens. Italian Journal of Animal Science, 12(1), e11.

    Adam, T. C., & Epel, E. S. (2007). Stress, eating and the reward system. Physiology Behavior, 91(4), 449-458.

    Ahiwe, E. U., Omede, A. A., Abdallh, M. B., & Iji, P. A. (2018). Managing dietary energy intake by broiler chickens to reduce production costs and improve product quality. Animal Husbandry and Nutrition, 115, 145.

    Ahmad, R., Yu, Y.-H., Hsiao, F. S.-H., Su, C.-H., Liu, H.-C., Tobin, I., Zhang, G., & Cheng, Y.-H. (2022). Influence of heat stress on poultry growth performance, intestinal inflammation, and immune function and potential mitigation by probiotics. Animals, 12(17), 2297.

    Al-Marzooqi, W., & Leeson, S. (2000). Effect of dietary lipase enzyme on gut morphology, gastric motility, and long-term performance of broiler chicks. Poultry Science, 79(7), 956-960.

    Alfaro, D., Silva, A., Borges, S., Maiorka, F., Vargas, S., & Santin, E. (2007). Use of Yucca schidigera extract in broiler diets and its effects on performance results obtained with different coccidiosis control methods. Journal of Applied Poultry Research, 16(2), 248-254.

    Altaf, M., Mahmud, A., & Mehmood, S. (2019). Effects of supplemented growth promoters on performance and intestinal morphology in broilers reared under different stocking densities. Brazilian Journal of Poultry Science, 21.

    Aslam, M. A., İpek, E., Riaz, R., Ӧzsoy, Ş. Y., Shahzad, W., & Güleş, Ӧ. (2021). Exposure of broiler chickens to chronic heat stress increases the severity of white striping on the pectoralis major muscle. Tropical Animal Health and Production, 53, 1-10.

    Attia, Y. A., Al-Harthi, M. A., & Sh. Elnaggar, A. (2018). Productive, physiological and immunological responses of two broiler strains fed different dietary regimens and exposed to heat stress. Italian Journal of Animal Science, 17(3), 686-697.

    Attia, Y. A., Hassan, R. A., Tag El-Din, A. E., & Abou-Shehema, B. M. (2011). Effect of ascorbic acid or increasing metabolizable energy level with or without supplementation of some essential amino acids on productive and physiological traits of slow-growing chicks exposed to chronic heat stress. Journal of Animal Physiology and Animal Nutrition (Berl), 95(6), 744-755.

    Baghoyan, L. (2006). Determination of energy-protein ratio (EPR) in broilers diet in southern climate environment. PhD Diss. Armenian Agrarian State University.

    Bailey, C. A. (2020). Chapter 21 - Precision poultry nutrition and feed formulation. In F. W. Bazer, G. C. Lamb, & G. Wu (Eds.), Animal Agriculture (pp. 367-378). Academic Press.

    Barriuso, B., Astiasarán, I., & Ansorena, D. (2013). A review of analytical methods measuring lipid oxidation status in foods: a challenging task. European Food Research and Technology, 236, 1-15.

    Boswell, T., Li, Q., & Takeuchi, S. (2002). Neurons expressing neuropeptide Y mRNA in the infundibular hypothalamus of Japanese quail are activated by fasting and co-express agouti-related protein mRNA. Brain research, Molecular Brain Research, 100(1-2), 31-42.

    Bowker, B. (2017). Chapter 4 - Developments in Our Understanding of Water-Holding Capacity. In M. Petracci & C. Berri (Eds.), Poultry Quality Evaluation (pp. 77-113). Woodhead Publishing.

    Bowker, B., Hawkins, S., & Zhuang, H. (2014). Measurement of water-holding capacity in raw and freeze-dried broiler breast meat with visible and near-infrared spectroscopy. Poultry Science, 93(7), 1834-1841.

    Bromfield, J. I., Hoffman, L. C., Horyanto, D., & Soumeh, E. A. (2021). Enhancing growth performance, organ development, meat quality, and bone mineralisation of broiler chickens through multi-enzyme super-dosing in reduced energy diets. Animals, 11(10), 2791.

    Brudnicki, A., Brudnicki, W., Szymeczko, R., Bednarczyk, M., Pietruszynska, D., & Kirkillo-Stacewicz, K. (2017). Histo-Morphometric adaptation in the small intestine  of broiler chicken, after embryonic exposure to galactosides. Journal of Animal & Plant Sciences, 27(4).

    Burkholder, K., Thompson, K., Einstein, M., Applegate, T., & Patterson, J. (2008). Influence of stressors on normal intestinal microbiota, intestinal morphology, and susceptibility to Salmonella enteritidis colonization in broilers. Poultry Science, 87(9), 1734-1741.

    Castellini, C., Mugnai, C., & Dal Bosco, A. (2002). Effect of organic production system on broiler carcass and meat quality. Meat Science, 60(3), 219-225.

    Chrousos, G. P., & Kino, T. (2007). Glucocorticoid action networks and complex psychiatric and/or somatic disorders. Stress, 10(2), 213-219.

    Costa, H., Vaz, R., Silva, M., Rodrigues, K., Sousa, L., Bezerra, L., Ribeiro, M., Barbosa, A., Almeida, J., & Oliveira, M. (2021). Performance and meat quality of broiler chickens reared on two different litter materials and at two stocking densities. British Poultry Science, 62(3), 396-403.

    Dairo, F., Adesehinwa, A., Oluwasola, T., & Oluyemi, J. (2010). High and low dietary energy and protein levels for broiler chickens. African Journal of Agricultural Research, 5(15), 2030-2038.

    Dansethakul, P., Thapanathamchai, L., Saichanma, S., Worachartcheewan, A., & Pidetcha, P. (2015). Determining a new formula for calculating low-density lipoprotein cholesterol: data mining approach. Excli Journal, 14, 478-483.

    Downs, K., Lien, R., Hess, J., Bilgili, S., & Dozier III, W. (2006). The effects of photoperiod length, light intensity, and feed energy on growth responses and meat yield of broilers. Journal of Applied Poultry Research, 15(3), 406-416.

    Dozier III, W., Price, C., Kidd, M., Corzo, A., Anderson, J., & Branton, S. (2006). Growth performance, meat yield, and economic responses of broilers fed diets varying in metabolizable energy from thirty to fifty-nine days of age. Journal of Applied Poultry Research, 15(3), 367-382.

    El-Gogary, M., & Abo EL-Maaty, H. (2020). Impact of zinc supplementation and stocking density on performance, physiological and immune responses in broiler chickens. Journal of Animal and Poultry Production, 11(3), 95-102.

    El Rammouz, R., Berri, C., Le Bihan-Duval, E., Babile, R., & Fernandez, X. (2004). Breed differences in the biochemical determinism of ultimate pH in breast muscles of broiler chickens--a key role of AMP deaminase? Poultry Science, 83(8), 1445-1451.

    Esmail, S. H. (2013). Factors affecting feed intake of chickens. World Poultry, 29(1), 15-17.

    Feddes, J., Emmanuel, E., & Zuidhoft, M. (2002). Broiler performance, body weight variance, feed and water intake, and carcass quality at different stocking densities. Poultry Science, 81(6), 774-779.

    Ge, X., Wang, A., Ying, Z., Zhang, L., Su, W., Cheng, K., Feng, C., Zhou, Y., Zhang, L., & Wang, T. (2019). Effects of diets with different energy and bile acids levels on growth performance and lipid metabolism in broilers. Poultry Science, 98(2), 887-895.

    Geng, A. L., Zhang, Q. Q., Chang, C., Wang, H. H., Chu, Q., Zhang, J., Yan, Z. X., & Liu, H. G. (2022). Dietary metabolizable energy and crude protein levels affect the performance, egg quality and biochemical parameters of a dual-purpose chicken. Animal Biotechnology, 1-10.

    Ghaffari, M., Shivazad, M., Zaghari, M., & Taherkhani, R. (2007). Effects of different levels of metabolizable energy and formulation of diet based on digestible and total amino acid requirements on performance of male broiler. International Journal of Poultry Science, 6, 276-279.

    Ghazalah, A., Abd-Elsamee, M., & Ali, A. (2008). Influence of dietary energy and poultry fat on the response of broiler chicks to heat therm. International Journal of Poultry Science, 7(4), 355-359.

    Gholami, M., Chamani, M., Seidavi, A., Sadeghi, A. A., & Aminafschar, M. (2020a). Effects of stocking density and climate region on performance, immunity, carcass characteristics, blood constitutes, and economical parameters of broiler chickens. Revista Brasileira de Zootecnia, 49.

    Gholami, M., Chamani, M., Seidavi, A., Sadeghi, A. A., & Aminafschar, M. (2020b). Effects of stocking density and environmental conditions on performance, immunity, carcase characteristics, blood constitutes, and economical parameters of cobb 500 strain broiler chickens. Italian Journal of Animal Science, 19(1), 524-535.

    Guo, S. a., & DiPietro, L. A. (2010). Factors affecting wound healing. Journal of dental research, 89(3), 219-229.

    He, S., Li, S., Arowolo, M. A., Yu, Q., Chen, F., Hu, R., & He, J. (2019). Effect of resveratrol on growth performance, rectal temperature and serum parameters of yellow‐feather broilers under heat stress. Animal Science Journal, 90(3), 401-411.

    Henrique, C. d. S., Oliveira, A. F. G., Ferreira, T. S., Silva, E. S., de Mello, B., Andrade, A. d. F., Martins, V., de Paula, F. O., Garcia, E. d. M., & Bruno, L. D. G. (2017). Effect of stocking density on performance, carcass yield, productivity, and bone development in broiler chickens Cobb 500®. Semina: Ciências Agrárias (Londrina), 38(4 Suppl. 1), 2705-2717.

    Hidalgo, M., Dozier III, W., Davis, A., & Gordon, R. (2004). Live performance and meat yield responses of broilers to progressive concentrations of dietary energy maintained at a constant metabolizable energy-to-crude protein ratio. Journal of Applied Poultry Research, 13(2), 319-327.

    Hong, J. S., Yoo, J., Cho, H. M., Wickramasuriya, S. S., Macelline, S. P., & Heo, J. M. (2022). Dietary effect of energy levels on growth performance and carcass characteristics of White Pekin duck over 21 days. Journal of Animal Science and Technology, 64(3), 471.

    Houshmand, M., Azhar, K., Zulkifli, I., Bejo, M., & Kamyab, A. (2012). Effects of prebiotic, protein level, and stocking density on performance, immunity, and stress indicators of broilers. Poultry Science, 91(2), 393-401.

    Hu, X., Li, X., Xiao, C., Kong, L., Zhu, Q., & Song, Z. (2021). Effects of dietary energy level on performance, plasma parameters, and central AMPK levels in stressed broilers. Frontiers in Veterinary Science, 8, 681858.

    Hussein, E., Suliman, G., Alowaimer, A., Ahmed, S., Abd El-Hack, M., Taha, A., & Swelum, A. (2020). Growth, carcass characteristics, and meat quality of broilers fed a low-energy diet supplemented with a multienzyme preparation. Poultry Science, 99(4), 1988-1994.

    Jaeschke, H. (1995). Mechanisms of oxidant stress-induced acute tissue injury. Proceedings of the Society for Experimental Biology and Medicine, 209(2), 104-111.

    Kamel, N., Hady, M., Ragaa, N., & Mohamed, F. (2021). Effect of nucleotides on growth performance, gut health, and some immunological parameters of broiler chicken exposed to high stocking density. Livestock Science, 253, 104703.

    Karimi, M., Esmaeilipour, O., Mazhari, M., & doomary, h. (2022). The effect of thyme (Thymus vulgaris) on growth performance, blood metabolites, and meat quality of broilers at high stocking density. Iranian Journal of Animal Science Research, (In Persian).

    Karomy, A. S., Habib, N. H., & Kasim, S. A. (2019). Influence of Different Levels of Crude Protein and Metabolizable Energy on Production Performance of Ross Broiler. Journal of Biology, Agriculture and Healthcare, 9(18).

    Kazemi, M., & Eila, N. (2021). Determining the optimum metabolizable energy of diets of ROSS 308 broiler chicks. Animal Science Knowledge and Research Journal, 1400(1), 45-57 (In Persian).

    Khan, T. J., Kuerban, A., Razvi, S. S., Mehanna, M. G., Khan, K. A., Almulaiky, Y. Q., & Faidallah, H. M. (2018). In vivo evaluation of hypolipidemic and antioxidative effect of 'Ajwa' (Phoenix dactylifera L.) date seed-extract in high-fat diet-induced hyperlipidemic rat model. Biomed Pharmacother, 107, 675-680.

    Khosravinia, H. (2015). Effect of dietary supplementation of medium-chain fatty acids on growth performance and prevalence of carcass defects in broiler chickens raised in different stocking densities. Journal of Applied Poultry Research, 24(1), 1-9.

    Kryeziu, A. J., Kamberi, M., Muji, S., Mestani, N., & Berisha, S. (2018). Carcass traits of broilers as affected by different stocking density and sex. Bulgarian Journal of Agricultural Science, 24(6), 1097-1103.

    Li, W., Wei, F., Xu, B., Sun, Q., Deng, W., Ma, H., Bai, J., & Li, S. (2019). Effect of stocking density and alpha-lipoic acid on the growth performance, physiological and oxidative stress and immune response of broilers. Asian-Australasian Journal of Animal Sciences, 32(12), 1914.

    Li, X., Xiong, X., Wu, X., Liu, G., Zhou, K., & Yin, Y. (2020). Effects of stocking density on growth performance, blood parameters and immunity of growing pigs. Animal Nutrition, 6(4), 529-534.

    Limdi, J., & Hyde, G. (2003). Evaluation of abnormal liver function tests. Postgraduate Medical Journal, 79(932), 307-312.

    Lin, H., Du, R., & Zhang, Z. (2000). Peroxide status in tissues of heat-stressed broilers. Asian-Australasian Journal of Animal Sciences, 13(10), 1373-1376.

    Liu, H., Du, Y., St-Pierre, J.-P., Bergholt, M. S., Autefage, H., Wang, J., Cai, M., Yang, G., Stevens, M. M., & Zhang, S. (2020). Bioenergetic-active materials enhance tissue regeneration by modulating cellular metabolic state. Science Advances, 6(13), eaay7608.

    Liu, L., Wang, X., Jiao, H., Zhao, J., & Lin, H. (2015). Glucocorticoids inhibited hypothalamic target of rapamycin in high fat diet-fed chicks. Poultry Science, 94(9), 2221-2227.

    Lu, Q., Yang, Y., Jia, S., Zhao, S., Gu, B., Lu, P., He, Y., Liu, R. X., Wang, J., Ning, G., & Ma, Q. Y. (2018). SRC1 Deficiency in Hypothalamic Arcuate Nucleus Increases Appetite and Body Weight. Journal of Molecular Endocrinology.

    Madilindi, M., Mokobane, A., Letwaba, P., Tshilate, T., Banga, C., Rambau, M., Bhebhe, E., & Benyi, K. (2018). Effects of sex and stocking density on the performance of broiler chickens in a sub-tropical environment. South African Journal of Animal Science, 48(3), 459-468.

    Mahmoud, R., & El-Rayes, T. (2016). Effect of stocking density and probiotic supplementation on broiler performance. Journal of Animal and Poultry Production, 7(12), 491-497.

    Maiorka, A., Dahlke, F., Penz, A., & Kessler, A. d. M. (2005). Diets formulated on total or digestible amino acid basis with different energy levels and physical form on broiler performance. Brazilian Journal of Poultry Science, 7, 47-50.

    Mardewi, N., Rukmini, N., Rejeki, I., & Astiti, N. (2019). The effect of cage density on the quality of broiler chicken meat. Journal of Physics: Conference Series,

    Matthews, J., Higbie, A., Southern, L., Coombs, D., Bidner, T., & Odgaard, R. (2003). Effect of chromium propionate and metabolizable energy on growth, carcass traits, and pork quality of growing-finishing pigs. Journal of Animal Science, 81(1), 191-196.

    Mazzoni, M., Zampiga, M., Clavenzani, P., Lattanzio, G., Tagliavia, C., & Sirri, F. (2022). Effect of chronic heat stress on gastrointestinal histology and expression of feed intake-regulatory hormones in broiler chickens. Animal, 16(8), 100600.

    Nasr, M. A., Alkhedaide, A. Q., Ramadan, A. A., Abd-El Salam, E. H., & Hussein, M. A. (2021). Potential impact of stocking density on growth, carcass traits, indicators of biochemical and oxidative stress and meat quality of different broiler breeds. Poultry Science, 100(11), 101442.

    Nawaz, A. H., Amoah, K., Leng, Q. Y., Zheng, J. H., Zhang, W. L., & Zhang, L. (2021). Poultry response to heat stress: Its physiological, metabolic, and genetic implications on meat production and quality including strategies to improve broiler production in a warming world. Frontiers in Veterinary Science, 8, 699081.

    Nogueira, W., Velásquez, P., Furlan, R. L., & Macari, M. (2013). Effect of dietary energy and stocking density on the performance and sensible heat loss of broilers reared under tropical winter conditions. Brazilian Journal of Poultry Science, 15, 53-57.

    Placer, Z. A., Cushman, L. L., & Johnson, B. C. (1966). Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Analytical Biochemistry, 16(2), 359-364.

    Prakatur, I., Miskulin, M., Pavic, M., Marjanovic, K., Blazicevic, V., Miskulin, I., & Domacinovic, M. (2019). Intestinal morphology in broiler chickens supplemented with propolis and bee pollen. Animals, 9(6), 301.

    Qaid, M., Albatshan, H., Shafey, T., Hussein, E., & Abudabos, A. (2016). Effect of stocking density on the performance and immunity of 1-to 14-d-old broiler chicks. Brazilian Journal of Poultry Science, 18, 683-692.

    Ravindran, V., Thomas, D. V., Thomas, D. G., & Morel, P. C. (2006). Performance and welfare of broilers as affected by stocking density and zinc bacitracin supplementation. Animal Science Journal, 77(1), 110-116.

    Ruban, S. (2009). Lipid peroxidation in muscle foods-an overview. Global Veterinaria, 3(6), 509-513.

    Sakomura, N., Longo, F., Oviedo-Rondon, E., Boa-Viagem, C., & Ferraudo, A. (2005). Modeling energy utilization and growth parameter description for broiler chickens. Poultry Science, 84(9), 1363-1369.

    Shah, S. W. A., Chen, D., Zhang, J., Liu, Y., Ishfaq, M., Tang, Y., & Teng, X. (2020). The effect of ammonia exposure on energy metabolism and mitochondrial dynamic proteins in chicken thymus: through oxidative stress, apoptosis, and autophagy. Ecotoxicology and Environmental Safety, 206, 111413.

    Shakouri, M. D., & Malekzadeh, M. (2016). Responses of broiler chickens to the nutrient recommendations of NRC (1994) and the Ross broiler management manual. Revista Colombiana de Ciencias Pecuarias, 29(2), 91-98.

    Shyh-Chang, N., Zhu, H., De Soysa, T. Y., Shinoda, G., Seligson, M. T., Tsanov, K. M., Nguyen, L., Asara, J. M., Cantley, L. C., & Daley, G. Q. (2013). Lin28 enhances tissue repair by reprogramming cellular metabolism. Cell, 155(4), 778-792.

    Simitzis, P., Kalogeraki, E., Goliomytis, M., Charismiadou, M., Triantaphyllopoulos, K., Ayoutanti, A., Niforou, K., Hager-Theodorides, A., & Deligeorgis, S. (2012). Impact of stocking density on broiler growth performance, meat characteristics, behavioural components and indicators of physiological and oxidative stress. British Poultry Science, 53(6), 721-730.

    Siri-Tarino, P. W. (2011). Effects of diet on high-density lipoprotein cholesterol. Current Atherosclerosis Reports, 13, 453-460.

    Sohail, M., Rahman, Z., Ijaz, A., Yousaf, M., Ashraf, K., Yaqub, T., Zaneb, H., Anwar, H., & Rehman, H. (2011). Single or combined effects of mannan-oligosaccharides and probiotic supplements on the total oxidants, total antioxidants, enzymatic antioxidants, liver enzymes, and serum trace minerals in cyclic heat-stressed broilers. Poultry Science, 90(11), 2573-2577.

    Son, J., Kim, H.-J., Hong, E.-C., & Kang, H.-K. (2022). Effects of stocking density on growth performance, antioxidant status, and meat quality of finisher broiler chickens under high temperature. Antioxidants, 11(5), 871.

    Sterten, H., Oksbjerg, N., Frøystein, T., Ekker, A. S., & Kjos, N. P. (2010). Effects of fasting prior to slaughter on pH development and energy metabolism post-mortem in M. longissimus dorsi of pigs. Meat Science, 84(1), 93-100.

    Sugiharto, S. (2022). Dietary strategies to alleviate high-stocking-density-induced stress in broiler chickens-a comprehensive review. Archives Animal Breeding, 65(1), 21-36.

    Summers, J., Spratt, D., & Atkinson, J. (1992). Broiler weight gain and carcass composition when fed diets varying in amino acid balance, dietary energy, and protein level. Poultry Science, 71(2), 263-273.

    Surai, P. F. (2016). Antioxidant systems in poultry biology: superoxide dismutase. Journal of Animal Research and Nutrition, 1(1), 8.

    Tahmoorespur, M., Ghazanfari, S., & Nobari, K. (2010). Evaluation of adiponectin gene expression in the abdominal adipose tissue of broiler chickens: feed restriction, dietary energy, and protein influences adiponectin messenger ribonucleic acid expression. Poultry Science, 89(10), 2092-2100.

    Teyssier, J.-R., Brugaletta, G., Sirri, F., Dridi, S., & Rochell, S. J. (2022). A review of heat stress in chickens. Part II: Insights into protein and energy utilization and feeding. Frontiers in Physiology, 1521.

    Thema, K. K., Mnisi, C. M., & Mlambo, V. (2022). Stocking density-induced changes in growth performance, blood parameters, meat quality traits, and welfare of broiler chickens reared under semi-arid subtropical conditions. PLoS One, 17(10), e0275811.

    Van Laack, R., Liu, C.-H., Smith, M., & Loveday, H. (2000). Characteristics of pale, soft, exudative broiler breast meat. Poultry Science, 79(7), 1057-1061.

    Waiz, H., Meena, N., Chavhan, D., & Tosawada, K. (2022). Impact of Stocking Density on Broiler Chicken Performance, Blood Biochemisty, and Carcass Attributes in an Intensive Rearing System. Iranian Journal of Applied Animal Science, 12(4), 803-812.

    Wan, X., Jiang, L., Zhong, H., Lu, Y., Zhang, L., & Wang, T. (2017). Effects of enzymatically treated Artemisia annua L. on growth performance and some blood parameters of broilers exposed to heat stress. Animal Science Journal, 88(8), 1239-1246.

    Wang, R., Pan, X., & Peng, Z. (2009). Effects of heat exposure on muscle oxidation and protein functionalities of pectoralis majors in broilers. Poultry Science, 88(5), 1078-1084.

    Wang, S., Li, C., Xu, X., & Zhou, G. (2013). Effect of fasting on energy metabolism and tenderizing enzymes in chicken breast muscle early postmortem. Meat science, 93(4), 865-872.

    Wang, X. J., Xu, S. H., Liu, L., Song, Z. G., Jiao, H. C., & Lin, H. (2017). Dietary fat alters the response of hypothalamic neuropeptide Y to subsequent energy intake in broiler chickens. Journal of Experimental Biology, 220(Pt 4), 607-614.

    Wilhelm, A. E., Maganhini, M. B., Hernández-Blazquez, F. J., Ida, E. I., & Shimokomaki, M. (2010). Protease activity and the ultrastructure of broiler chicken PSE (pale, soft, exudative) meat. Food Chemistry, 119(3), 1201-1204.

    Yang, J., Liu, L., Sheikhahmadi, A., Wang, Y., Li, C., Jiao, H., Lin, H., & Song, Z. (2015). Effects of Corticosterone and Dietary Energy on Immune Function of Broiler Chickens. PLoS One, 10(3), e0119750.

    Yoshioka, T., Kawada, K., Shimada, T., & Mori, M. (1979). Lipid peroxidation in maternal and cord blood and protective mechanism against activated-oxygen toxicity in the blood. American Journal of Obstetrics and Gynecology, 135(3), 372-376.

    Young, O., West, J., Hart, A., & Van Otterdijk, F. (2004). A method for early determination of meat ultimate pH. Meat science, 66(2), 493-498.

    Yuan, L., Lin, H., Jiang, K. J., Jiao, H. C., & Song, Z. G. (2008). Corticosterone administration and high-energy feed results in enhanced fat accumulation and insulin resistance in broiler chickens. British Poultry Science, 49(4), 487-495.

    Zaboli, G., Huang, X., Feng, X., & Ahn, D. U. (2019). How can heat stress affect chicken meat quality?–a review. Poultry Science, 98(3), 1551-1556.

    Zahiraddini, H., Mirai Ashtiani, S. R., shivazad, M., & Nikkhah, A. (2001). Impact of Dietary Energy and Nutrients Concentration on the Performance of Arian Broiler Chicks [Research]. Journal Title, 5(2), 125-135 (In Persian).

    Zamani, P., Zarafroz, F., & Reza Yazdi, K. (2006). Comparison of the effect of different levels of metabolic energy and crude protein in the diet on the performance of Arian broiler chickens. Agricultural Sciences and Industries, 20(2), 3-14 (In Persian).

    Zhang, G., Yang, Z., Zhang, Q., Yang, W., & Jiang, S. (2012). A multienzyme preparation enhances the utilization of nutrients and energy from pure corn and wheat diets in broilers. Journal of Applied Poultry Research, 21(2), 216-225.

    Zhao, P. Y., & Kim, I. H. (2017). Effect of diets with different energy and lysophospholipids levels on performance, nutrient metabolism, and body composition in broilers. Poultry Science, 96(5), 1341-1347.