بررسی تغییر نسبت واریانس پلی‌ژنی باقیمانده بر توانایی پیش بینی ارزیابی ژنومی نتاج آمیخته

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده .کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

2 گروه علوم دامی، دانشکدگان .کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

3 سازمان ملی پرورش و اصلاح‌نژاد گاو گوشتی(TYR)، هامار، نروژ.

4 بخش تحقیقات کشاورزی، وزارت کشاورزی استرالیا ، ویکتوریا، باندورا، استرالیا گروه زیست شناسی سامانه های کاربردی، دانشگاه لاتروب،

چکیده

ارزیابی ژنومی نتاج آمیخته به دلیل محدودیت دسترسی به شجره، ژنوتیپ و عملکرد آن­ها، معمولا بر اساس  اطلاعات جمعیت­های خالص والدینی با هدف بهبود عملکرد نتاج آمیخته­ انجام­ می­گیرد. به کارگیری ارزیابی ژنومی تک­مرحله­ای (ssGBLUP) علی­رغم استفاده همزمان از اطلاعات حیوانات تعیین ­ژنوتیپ شده و فاقد ژنوتیپ برای افزایش توانایی پیش­بینی، به دلیل عدم سازگاری ماتریس­های خویشاوندی ژنومی و شجره­ای، ممکن است موجب پراکندگی بیشتر و اریب رو به بالا ارزش اصلاحی پیش­بینی شده نسبت به روش BLUP شود. لذا در این مطالعه توانایی پیش­بینی ارزش اصلاحی ژنومی افراد آمیخته بر اساس اطلاعات شبیه سازی شده جمعیت­های خالص والدینی و نتاج آمیخته با استفاده از روش ssGBLUP با در نظر گرفتن نسبتهای مختلف واریانس پلی­ژنی باقیمانده بررسی شده است. بر اساس نتیجه این پژوهش استفاده از نسبتهای مختلف واریانس پلی­ژنی باقیمانده (β) در ترکیب ماتریس خویشاوندی ژنومی و شجره­ای، تاثیر قابل ملاحظه­ای بر صحت، اریب، پراکندگی پیش­بینی ارزش­اصلاحی ژنومی افراد آمیخته ندارد. بعلاوه در امتزاج ماتریس های خویشاوندی ژنومی و خویشاوندی شجره­ای، نسبتهای مختلف واریانس پلی­ژنی باقیمانده(β)  در مدت زمان رسیدن به نقطه همگرایی اثری نداشت. بنابراین برای سادگی بیشتر مدل، استفاده از حالت پیش­فرض β (معادل 05/0) در تشکیل معکوس ماتریس خویشاوندی قابل توصیه می­باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the fluctuations of residual polygenic variance on predictive ability of genomic breeding values of crossbred progeny

نویسندگان [English]

  • Somayeh Barani 1
  • S Reza Miraei-Ashtiani 2
  • Ardeshir Nejati-Javaremi 1
  • Hadi Esfandyari 3
  • Majid Khansefid 4
1 Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
2 Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
3 Norwegian Beef Cattle Organizations, TYR, Hamar, Norway
4 Agriculture Victoria Research, Bundoora, VIC 3083, Australia School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
چکیده [English]

Genomic evaluation of crossbred progeny due to their limited pedigree and lack of genotyping and performance accessibility is inevitably based on the information from purebred parental populations to increase crossbred performance. Despite the fact that single-step genomic evaluation (ssGBLUP) method can use information from both genotyped and non-genotyped animals simultaneously, leading to more accurate genomic estimated breeding values, but due to the incompatibility of the genomic and pedigree relationship matrices, it might lead to dispersion (inflation/deflation) and bias in the estimated breeding values higher than that with the BLUP method. Therefore, in this study, the prediction ability of the genomic breeding value of crossbred progeny was investigated based on the ssGBLUP method and simulation data of the purebred parents and crossbred population, considering the different scaling factor of residual polygenic variance. Based on the results of this study, the use of different ratio of residual polygenic (β) variance to incorporate the genomic and pedigree relationship matrices did not considerably affect the accuracy, bias and dispersion of the predicted genomic breeding values in crossbred progeny. In addition, the effect of proportion of residual polygenic variance (β) in blending the genomic and pedigree relationship matrices does not significantly affect the convergence point. Therefore, to simplify the model, the default value of β (0.05) might be used in the inverse of the relationship matrix.

کلیدواژه‌ها [English]

  • Crossbreeding
  • Single step genomic evaluation
  • Prediction ability
  • Simulation

Extended Abstract

Introduction

Crossbreeding, as outcrossing between breeds, is widely used in most livestock breeds to benefit from hybrid vigor effects and breed complementarity to improve performance levels of crossbred offspring. Proper crossbreeding plans can also prevent inbreeding and inbreeding depression. In fact, the main reasons to use crossbreeding plans are: 1- Using different levels of additive genetic effects between breeds, 2- Take advantage of hybrid vigor due to non-additive effects such as epistasis, dominance and over dominance and also, prevent inbreeding and inbreeding depression. However, collecting information on crossbred populations is difficult and expensive so, the breeding value of crossbreds is inevitably predicted based on the information of the parental purebreds. The genomic evaluation of crossbred offspring in order to increase their performance, is primarily based on the information of purebred parents, while it eventually leads to the selection of superior purebreds in the parental lines (Esfandyari et al., 2015). Nevertheless, A variety of factors such as genetics-environment interactions, linkage disequilibrium, non-additive genetic effects such as dominance, epistasis and imprinting, reduce the genetic correlation between these two populations, therefore the selection based on purebred parental populations will not necessarily produce crossbred offspring with higher performance. However, due to the low genetic correlation between the two populations, purebred animals do not always produce crossbred offspring with enough high performance. In general, predicting the breeding value of each population requires information from the reference population of the same population, but inevitably, genetic evaluation of crossbred uses information from mixed populations with high genetic correlation.

Additionally, Single-step Genomic Best Liner Unbiased Prediction (ssGBLUP) models can simultaneously use genotyped(G) and non-genotyped animal’s information () which leads to realize more accurate genomic breeding values.  But then, one of the major challenges in using ssGBLUP and simultaneously using pedigree and genomic matrices of genotyped and non-genotyped animals is compromised with incompatibility between the two matrices, which can lead to bias and dispersion of genomic estimated breeding values. The compatibility of these two matrices means that the mean of diagonal and non-diagonal elements of G and  must be similar. To calculate , is blended to a small part of a positive definite matrix, which usually includes either an Identity matrix or , but the condition for blending  with would be inversable and compatible (Vitezica et al., 2011). One simple way to reduce the bias and decrease the predicted inflation and deflation of GEBV is to consider inbreeding coefficient in calculation of inverse of the relationship matrices and reliability, besides using the appropriate proportion of residual polygenic variance in blending of genomic and pedigree relationship matrices. So, the use of multiple populations and appropriate genomic evaluation models to predict of crossbred performance has been a subject of interest of this investigation.

 

Material methods

In this study, the datasets of purebred and crossbred animals were simulated based on a sheep production system for a single trait with a heritability of 0.3. This simulation was implemented with 50K single nucleotide polymorphisms and 500 quantitative trait loci (QTLs) across the whole genome. Minor allele frequencies of markers were assumed upper than 0.05 and mutation rates of the SNPs and QTL were considered. In this situation, the QTL allele effects are inferred from a Gamma distribution allowing for.  True breeding value (TBV) has counted the sum of the additive effects for each QTL and the observed phenotypes were computed additive effect and residual effects. The ability to predict GEBV in crossbreds was investigated using ssGBLUP method and simulated information of purebred parental and crossbred progenies. Further, we investigated the effect of proportion of residual polygenic variance in blending of genomic and pedigree relationship matrices in order to improve the prediction ability.

 

Results

 The results showed that using genotype of crossbred animals in combination with purebred parental population in genomic evaluation improved the prediction accuracy, when the breeding objective was to increase the crossbreed performance. In addition, considering inbreeding coefficient in calculation of the inverse of the relationship matrix and the consistency of prediction decreased the prediction bias and increased the reliability of GEBV. Furthermore, different residual polygenic variance (β) values did not have a significant effect on the accuracy, bias and inflation or deflation of the prediction of GEBV in crossbred animals.

 

Conclusion

 The prediction accuracy, bias, and dispersion were similar across the different proportion of residual polygenic variance (β) in blending the genomic and pedigree relationship matrices, therefore, for the simplicity of ssGBLUP model, it is recommended to use the default β (0.05).

Aguilar, I., Fernandez, E. N., Blasco, A., Ravagnolo, O., & Legarra, A. (2020). Effects of ignoring inbreeding in model‐based accuracy for BLUP and SSGBLUP. Journal of animal breeding and genetics, 137(4), 356-364.
Alvarenga, A. B., Veroneze, R., Oliveira, H. R., Marques, D. B., Lopes, P. S., Silva, F. F., & Brito, L. F. (2020). Comparing alternative single-step GBLUP approaches and training population designs for genomic evaluation of crossbred animals. Frontiers in Genetics, 263.
Brown, D., Swan, A., Boerner, V., Li, L., Gurman, P., McMillan, A., Van der Werf, J., Chandler, H., Tier, B., & Banks, R. (2018). Single-step genetic evaluations in the Australian sheep industry. Proceedings of the world congress on genetics applied to livestock production,
Esfandyari, H., Sørensen, A. C., & Bijma, P. (2015). Maximizing crossbred performance through purebred genomic selection. Genetics Selection Evolution, 47(1), 1-16.
Falconer, D. S. (1996). Introduction to quantitative genetics. Pearson Education India.
Fragomeni, B. O., Lourenco, D. A., Masuda, Y., Legarra, A., & Misztal, I. (2017). Incorporation of causative quantitative trait nucleotides in single-step GBLUP. Genetics Selection Evolution, 49(1), 1-11.
Hollifield, M. K., Bermann, M., Lourenco, D., & Misztal, I. (2022). Impact of blending the genomic relationship matrix with different levels of pedigree relationships or the identity matrix on genetic evaluations. JDS communications, 3(5), 343-347.
Kluska, S., Masuda, Y., Ferraz, J. B. S., Tsuruta, S., Eler, J. P., Baldi, F., & Lourenco, D. (2021). Metafounders May Reduce Bias in Composite Cattle Genomic Predictions. Frontiers in Genetics, 1440.
Legarra, A., Aguilar, I., & Misztal, I. (2009). A relationship matrix including full pedigree and genomic information. Journal of dairy science, 92(9), 4656-4663.
Legarra, A., Christensen, O. F., Aguilar, I., & Misztal, I. (2014). Single Step, a general approach for genomic selection. Livestock Science, 166, 54-65.
Liu, Z., Goddard, M., Reinhardt, F., & Reents, R. (2014). A single-step genomic model with direct estimation of marker effects. Journal of dairy science, 97(9), 5833-5850.
Lourenco, D., Legarra, A., Tsuruta, S., Masuda, Y., Aguilar, I., & Misztal, I. (2020). Single-step genomic evaluations from theory to practice: using SNP chips and sequence data in BLUPF90. Genes, 11(7), 790.
Lourenco, D., Tsuruta, S., Fragomeni, B., Chen, C., Herring, W., & Misztal, I. (2016). Crossbreed evaluations in single-step genomic best linear unbiased predictor using adjusted realized relationship matrices. Journal of animal science, 94(3), 909-919.
Masuda, Y., VanRaden, P. M., Tsuruta, S., Lourenco, D. A., & Misztal, I. (2022). Invited review: Unknown-parent groups and metafounders in single-step genomic BLUP. Journal of dairy science, 105(2), 923-939.
Meyer, K., Tier, B., & Swan, A. (2018). Estimates of genetic trend for single-step genomic evaluations. Genetics Selection Evolution, 50, 1-11.
Misztal, I. (2017). Studies on inflation of GEBV in single-step GBLUP for type. Interbull Bulletin(51).
Misztal, I., Stein, Y., & Lourenco, D. (2022). Genomic evaluation with multibreed and crossbred data. JDS communications.
Misztal, I., Tsuruta, S., Lourenco, D., Aguilar, I., Legarra, A., & Vitezica, Z. (2014). Manual for BLUPF90 family of programs. Athens: University of Georgia, 199.
Neves, H. H., Carvalheiro, R., & Queiroz, S. A. (2012). A comparison of statistical methods for genomic selection in a mice population. BMC genetics, 13(1), 1-17.
Pahlavan, R., Abdollahi-Arpanahi, R., Afrazandeh, M., Nazari, B. M., & Kazemi, A. (2023). Scaling factor assessment in Single-Step GBLUP evaluations for small genotyped populations: a case study on Iranian Holstein cattle. Livestock Science, 105287.
Sargolzaei, M., & Schenkel, F. S. (2009). QMSim: a large-scale genome simulator for livestock. Bioinformatics, 25(5), 680-681.
Tsuruta, S., Lourenco, D., Masuda, Y., Misztal, I., & Lawlor, T. (2019). Controlling bias in genomic breeding values for young genotyped bulls. Journal of dairy science, 102(11), 9956-9970.
Van Grevenhof, I. E., & Van der Werf, J. H. (2015). Design of reference populations for genomic selection in crossbreeding programs. Genetics Selection Evolution, 47(1), 1-9.
VanRaden, P., Tooker, M., Chud, T., Norman, H., Megonigal Jr, J., Haagen, I., & Wiggans, G. (2020). Genomic predictions for crossbred dairy cattle. Journal of dairy science, 103(2), 1620-1631.
VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. Journal of dairy science, 91(11), 4414-4423.
Vitezica, Z., Aguilar, I., Misztal, I., & Legarra, A. (2011). Bias in genomic predictions for populations under selection. Genetics Research, 93(5), 357-366.
Wientjes, Y. C., Bijma, P., Vandenplas, J., & Calus, M. P. (2017). Multi-population genomic relationships for estimating current genetic variances within and genetic correlations between populations. Genetics, 207(2), 503-515.

مقالات آماده انتشار، پذیرفته شده
انتشار آنلاین از تاریخ 29 مهر 1402
  • تاریخ دریافت: 07 خرداد 1402
  • تاریخ بازنگری: 18 شهریور 1402
  • تاریخ پذیرش: 09 مهر 1402