اثر منابع مختلف منیزیم در جیره‌های پیش از زایش بر متابولیسم انرژی، عملکرد و سلامت گاوهای ‏هلشتاین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری تغذیه دام، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

2 استاد، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

3 دانشیار، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

چکیده

هدف از این مطالعه بررسی اثر منابع مختلف منیزیم در جیره‌های پیش از زایش بر عملکرد تولیدی، متابولیت‌های خون، مقاومت به انسولین و ناهنجاری‌های سلامتی در گاوهای دوره انتقال بود. تعداد 60 راس گاو از 21 روز مانده به زایش به طور تصادفی به چهار تیمار آزمایشی اختصاص یافتند. تیمار‌ها شامل تیمار شاهد (منیزیم در سطح توصیه‌های NRC)، تیمار سولفات ‌منیزیم، تیمار کربنات ‌منیزیم و تیمار اکسید ‌منیزیم (منیزیم جیره 6/0 درصد ماده خشک) بود. جیره‌های آزمایشی قابلیت هضم ماده خشک و NDF را افزایش دادند (05/0>P). وزن گوساله، وزن جفت، تغییرات وزن و امتیاز بدنی دام‌ها تحت‌تاثیر تیمارها قرار نگرفت. وقوع جفت‌ماندگی و هیپومنیزیومی در تیمار‌های آزمایشی کاهش یافت (05/0>P). تیمارهای اکسید و کربنات‌منیزیم تمایل به تولید شیر بالاتر داشتند (08/0=P). چربی شیر در جیره شاهد افزایش یافت (05/0>P). جیره‌های آزمایشی NEFA و کلسترول پلاسما را کاهش داده و منیزیم و کلسیم پلاسما را افزایش دادند (05/0>P). تیمار شاهد پایین‌ترین نرخ زدودگی گلوکز و RQUICKI را داشت (05/0>P).

کلیدواژه‌ها


عنوان مقاله [English]

Effect of different sources of magnesium in prepartum diets on energy metabolism, ‎performance and health of Holstein cows

نویسندگان [English]

  • Forood Ehsanbakhsh 1
  • Hamid Amanlou 2
  • Mohammad Hossein Shahir 3
1 Ph.D. Candidate, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
2 Professor, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
3 Associate Professor, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
چکیده [English]

The aim of this study was to evaluate the effect of different source of magnesium in prepartum diets on productive performance, blood metabolites, insulin resistance and health disorders in transition cows. Sixty cows from 21 days prepartum were randomly assigned to 4 experimental treatments. Treatments were control treatment (Mg at NRC recommendation), magnesium sulfate treatment, magnesium carbonate treatment and magnesium oxide treatment (Mg was 0.60% of ration DM). Experimental diets increased DM and NDF digestibility (P<0.05). However, Calf and placenta weight, body weight changes and BCS were not affected by treatments. The incidence of retained placenta and hypomagnesemia decreased in experimental treatments (P<0.05). Magnesium oxide and carbonate treatments tended to increase milk yield (P=0.08). Milk fat increased in the control diet (P<0.05). Experimental diets decreased plasma NEFA and cholesterol and improved plasma Mg and Ca (P<0.05). Control treatment had the lowest rate of glucose CR (%) and RQUICKI (P<0.05).

کلیدواژه‌ها [English]

  • Insulin resistance
  • Magnesium
  • NEFA
  • Prepartum
  • Retained Placenta‎
  1. Amanlou, H., Motahari, E., Amirabadi Farahani, T. & Eslamian Farsuni, N. (2018). Magnesium deficiency in the prepartum diet and incidence of retained placenta in Holstein cows. In: 4th national seminar of animal production (In Farsi).
  2. Amirabadi Farahani, T., Amanlou, H., & Kazemi-Bonchenari, M. (2017). Effects of shortening the close-up period length coupled with increased supply of metabolizable protein on performance and metabolic status of multiparous Holstein cows. Journal of Dairy Science, 100, 1–19.
  3. Ammerman, C. B., Chicco, C. F., Moore, J. E., Van Walleghem, P. A. & Arrington, L. R. (1971). Effect of dietary magnesium on voluntary feed intake and rumen fermentations. Journal of Dairy Science, 54, 1288–1293.
  4. (1990). Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists, Arlington, VA.
  5. Barbagallo, M., Dominguez, L. J., Galioto, A., Ferlisi, A., Cani, C., Malfa, L., Pineo, A., Busardo, A. &Paolisso, G. (2003). Role of magnesium in insulin action, diabetes and cardio-metabolic syndrome X. Molecular Aspects of Medicine, 24, 39-52.
  6. Bicalho, M. L. S., Lima, F.S., Ganda, E. K., Foditsch, C., Meira Jr, E. B. S., Machado, V. S., Teixeira, A. G. V., Oikonomou, G., Gilbert, R. O. & Bicalho, R. C. (2014). Effect of trace mineral supplementation on selected minerals, energy metabolites, oxidative stress, and immune parameters and its association with uterine diseases in dairy cattle. Journal of Dairy Science, 97, 1–15.
  7. Chapinal, N., Carson, M. E., LeBlanc, S. J., Leslie, K. E., Godden, S., Capel, M., Santos, J. E., Overton, M. W. & Duffield, T. F. (2012). The association of serum metabolites in the transition period with milk production and early-lactation reproductive performance. Journal of Dairy Science, 95, 1301-1309.
  8. Chicco, C. F., Ammerman, C. B., Hillis, W. G. & Arrington, L. R. (1972). Utilization of dietary magnesium by sheep. American Journal of Physiology, 222, 1469–1472.
  9. De Koster, J. D. & Opsomer, G. (2013). Insulin resistance in dairy cows. Veterinary Clinics of North America: Food Animal Practice, 29, 299-322.
  10. Erdman, R. A., Hemken, R. W. & Bull, L. S. (1982). Dietary sodium bicarbonate and magnesium oxide for early postpartum lactating dairy cows: effects on production, acid-base metabolism, and digestion. Journal of Dairy Science, 65, 712-731.
  11. Goff, J. P. (2014). Calcium and magnesium disorders. Veterinary Clinics of North America: Food Animal Practice, 30, 359-381.
  12. Grober, U., Schmidt, J. & Kisters, K. (2015). Magnesium in prevention and therapy. Nutrients, 7, 8199-8226.
  13. Jeong, J. K., Choi, I. S., Moon, S. H., Kang, H. G. & Kim I. H. (2018). Relationship between serum magnesium concentration during the transition period, peri- and postpartum disorders, and reproductive performance in dairy cows. Livestock Science, 213, 1-6.
  14. Jittakhot S., Schonewille, J.T., Wouterse, H., Uijttewaal, A.W.J., Yuangklang, C. & Beynen, A.C. (2004). Increasing magnesium intakes in relation to magnesium absorption in dry cows. Journal of Dairy Research, 71, 297-303.
  15. Kerestes, M., Faigl, V., Kulcsar, M., Balogh, O., Foldi, J., Febel, H., Chilliard, Y. & Huszenicza, G. (2009). Periparturient insulin secretion and whole-body insulin responsiveness in dairy cows showing various forms of ketone pattern with or without puerperal metritis. Domestic Animal Endocrinology, 37, 250-261.
  16. Lean, I. J., De Garis, P. J., McNeill, D. M. & Block, E. (2006). Hypocalcemia in dairy cows: Meta-analysis and dietary cation anion difference theory revisited. Journal of Dairy Science, 89, 669-684.
  17. LeMarchand-Brustel, Y., Gual, P., Gremeaux, T., Gonzalez, , Barres, R. &Tanti, J. F. (2003). Fatty acid-induced insulin resistance: role of insulin receptor substrate 1 serine phosphorylation in the retroregulation of insulin signalling. Biochemical Society Transactions, 31, 1152-1156.
  18. Leno, B. M., LaCount, S. E., Ryan, C. M., Briggs, D., Crombie, M. & Overton, T. R. (2017a). The effect of source of supplemental dietary calcium and magnesium in the peripartum period, and level of dietary magnesium postpartum, on mineral status, performance, and energy metabolites in multiparous Holstein cows. Journal of Dairy Science, 100, 7183-7197.
  19. Leno, B. M., Ryan, C. M., Stokol, T., Kirk, D., Zanzalari, K. P., Chapman, J. D. & Overton, T. R. (2017b). Effects of prepartum dietary cation-anion difference on aspects of peripartum mineral and energy metabolism and performance of multiparous Holstein cows. Journal of Dairy Science, 100, 4604-4622.
  20. Martin, E., Arrington, L. R., Moore, J. E., Ammerman, C. B., Davis, G. K. & Shirley, R. L. (1964). Effect of magnesium and sulfur upon cellulose digestion of purified rations by cattle and sheep. The Journal of Nutrition, 83, 60-64.
  21. Martın Tereso, J. & Martens, H. (2014). Calcium and magnesium physiology and nutrition in relation to the prevention of milk fever and tetany (dietary management of macrominerals in preventing disease). Veterinary Clinics of North America: Food Animal Practice, 30, 643-670.
  22. Morales, M. S. & Dehority, B. A. (2014). Magnesium requirement of some of the principal rumen cellulolytic bacteria. Animal, 9, 1427-1432.
  23. (2001). Nutrient requirements of dairy cattle. (7th rev. ed.). National Academy Press. Washington, DC, USA
  24. Ospina, P. A., Nydam, D. V., Stokol, T. & Overton, T. R. (2010). Associations of elevated nonesterified fatty acids and beta-hydroxybutyrate concentrations with early lactation reproductive performance and milk production in transition dairy cattle in the Northeastern United States. Journal of Dairy Science, 93, 1596–1603.
  25. Qu, Y., Fadden, A. N., Traber, M. G. & Bobe, G. (2014). Potential risk indicators of retained placenta and other diseases in multiparous cows. Journal of Dairy Science, 97, 4151-65.
  26. Santos, J. E. P., Lean, I. J., Golder, H. & Block, E. (2019). Meta-analysis of the effects of prepartum dietary cation-anion difference on performance and health of dairy cows. Journal of Dairy Science, 102, 2134- 2154.
  27. Suarez, A., Pulido, N., Casla, A., Casanova, B., Arrieta, F. J. & Rovira, A. (1995). Impaired tyrosine-kinase activity of muscle insulin receptors from hypomagnesaemic rats. Diabetologia, 38, 1262-1270.
  28. Tsiamadis, V., Banos, G., Panousis, N., Kritsepi-Konstantinou, M., Arsenos, G & Valergakis, G. E. (2016). Genetic parameters of subclinical macromineral disorders and major clinical diseases in postparturient Holstein cows. Journal of Dairy Science, 99, 8901-8914.
  29. Van Keulen, J. & Young, B. (1977). Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. Journal of Animal Science, 44, 282-287.
  30. Van Saun, R.J. (2014). Dairy nutrition. Veterinary Clinics of North America: Food Animal Practice, 30, 115-337.
  31. Van Soest, P. J., Robertson, J. & Lewis, B. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74:3583-3597.
  32. Xin, Z., Tucker, W. B. & Hemken, R. W. (1989). Effect of reactivity rate and particle size of magnesium oxide on magnesium availability, acid-base balance, mineral metabolism, and milking performance of dairy cows. Journal of Dairy Science, 72, 462-470.