8954856055505db

شناسایی نشانه‌های انتخاب مرتبط با مقاومت به بیماری لکوز (‏BLV‏) در گاوهای هلشتاین ایران‏

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری تخصصی ژنتیک و اصلاح نژاد دام، گروه علوم دامی، پردیس ارس، دانشگاه تهران، جلفا، ایران

2 استادیار ژنتیک و اصلاح نژاد دام، گروه علوم دامی پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

3 دانشیار ژنتیک و اصلاح نژاد دام، گروه علوم دامی،دانشکده کشاورزی، دانشگاه اراک، اراک، ایران

4 دانشیار ژنتیک و اصلاح نژاد دام، گروه علوم دامی،دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

بیماری ویروس لکوز گاوی (BLV) یکی از بیماری‌های کشنده ویروسی است که هر ساله با ضررهای اقتصادی زیادی در صنعت گاو شیری، همانند کاهش توان تولیدی و عملکرد تولیدمثلی حیوانات مبتلا و درنهایت حذف آن‌ها همراه است. هدف از اجرای این پژوهش شناسایی نشانه­های انتخاب مرتبط با مقاومت به BLV در گاوهای هلشتاین ایران بود. به این منظور مجموع ۱52 حیوان برای ۳۰۱۰5 جایگاه نشانگریSNP با استفاده از تراشه­های GGP Bovine LD v4 تعیین ژنوتیپ شدند. پس از کنترل کیفیت داده­های اولیه در نهایت 23513 نشانگر SNP در 140 رأس دام وارد آنالیزهای بعدی شدند. حیوانات مورد استفاده در دو دسته مقاوم به بیماری یا سالم (68 رأس) و بیمار (77 رأس) گروه­بندی شدند و بخش­هایی از ژنوم که در این حیوانات به ‌صورت واگرا هدف انتخاب قرار گرفته بودند با استفاده از آماره نااُریب تتا مورد بررسی قرار گرفتند. نتایج این تحقیق نشان داد که چهار منطقه ژنومی روی کروموزوم­های شماره 1، 13، 20 و 22 در این حیوانات هدف انتخاب قرار گرفته­اند. بررسی ژن‌های گزارش‌شده در این مناطق نشان داد که در داخل یا مجاورت این مناطق ژنومی، ژن‌هایی همانند ژن STGA1 در کروموزوم 1، ژن‌های STK35، EBF4 و PDYN در کروموزوم 13 و ژن‌هایی SLC38A3، RASSF1 و RBM6 در کروموزوم 22 شناسایی شده است. بررسی عملکرد این ژن‌ها نشان داد که این ژن‌ها در سیستم ایمنی و تنظیم چرخه میتوز و میوز و سرکوب سرطان نقش دارند. در مجموع نتایج این تحقیق می­تواند منبع اطلاعاتی ارزشمندی در جهت شناسایی مناطق ژنومی کاندیدا و یا ژن‌های سببی مرتبط با این بیماری فراهم آورد.

کلیدواژه‌ها


عنوان مقاله [English]

Identification of selective signatures associated with resistance to bovine leukosis ‎‎(BLV) in Iranian Holstein cows

نویسندگان [English]

  • Mahdi JavanNikkhah 1
  • Hossein Moradi Shahrbabak 2
  • Mohammad Hossein Moradi 3
  • Ali Sadeghi-Sefidmazgi 4
1 Ph.D. Candidate in Animal Breeding & Genetics, Aras International Campus, Unversity of Tehran, Jolfa, Iran
2 Assistant Professor of Animal Breeding & Genetics, College of agriculture & Natural Resource, Unversity of Tehran, Karaj, Iran
3 Associate Professor, Department of Animal Science, Arak University, Arak, Iran
4 Associate Professor, Department of Animal Science, Collge of Agriculture, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

Bovine viral leukemia (BLV) is one of the deadliest viral diseases that is associated with many economic losses in the dairy industry, such as reduced production capacity and reproductive performance of infected animals and their eventual culling. The aim of this study was to identify the selection signatures associated with resistance to BLV in Iranian Holstein cows. For this purpose, a total of 152 animals were genotyped for 30,105 SNP markers using GGP Bovine LD v4 chips. After quality control of the initial data, 23,513 SNP markers in 140 animals of cattle were finally entered for further analysis. The animals used were classified into two groups consisting resistant to disease or healthy (68 animals) and sick (77 animals) animals, and then the regions of the genome that were divergently selected in these animals were evaluated using the unbiased Theta method. The results of this study showed that four genomic regions on chromosomes 1, 13, 20 and 22 were divergently selected in these groups. Study of the genes reported in these regions revealed that some genes such as the STGA1 on chromosome 1, the STK35, EBF4, and PDYN on chromosome 13 and the SLC38A3, RASSF1, and RBM6 on chromosome 22 were previously reported within or adjacent to these genomic regions. Study the function of these genes showed that the genes are involved in the immune system, the regulation of mitotic and meiotic cycles and cancer suppression. Overall, the results of this study can provide a valuable source of information to identify candidate genomic regions or causal genes associated with this disease.

کلیدواژه‌ها [English]

  • Bovine leukosis
  • Immune system
  • selection signatures
  • Theta statistics‎
  1. Abbasi Moshaii, B., Rahimi-Mianji, G., Nejai-Javaremi, A., Moradi, M. h. & Konig, S. (2017). Genomic scan for selection signatures associated with mastitis in German Holstein cattle. Iranian Journal of Animal Science, 48(3), 453-461. (In Farsi)
  2. Abdalla, E., Peñagaricano, F., Byrem, T., Weigel, K. & Rosa, G. (2016). Genome‐wide association mapping and pathway analysis of leukosis incidence in a US Holstein cattle population. Animal Genetics, 47(4), 395-407.
  3. Akey, J. M., Zhang, G., Zhang, K., Jin, L. & Shriver, M. D. (2002). Interrogating a high-density SNP map for signatures of natural selection. Genome Research, 12(12), 1805-1814.
  4. Ballingall, K. T., Luyai, A., Rowlands, G. J., Sales, J., Musoke, A. J., Morzaria, S. P. & McKeever, D. J. (2004). Bovine leukocyte antigen major histocompatibility complex class II DRB3* 2703 and DRB3* 1501 alleles are associated with variation in levels of protection against Theileria parva challenge following immunization with the sporozoite p67 antigen. Infection and Immunity, 72(5), 2738-2741.
  5. Barendse, W., Harrison, B. E., Bunch, R. J., Thomas, M. B. & Turner, L. B. (2009). Genome wide signatures of positive selection: the comparison of independent samples and the identification of regions associated to traits. BMC Genomics, 10(1), 178.
  6. Bermingham, M., Bishop, S., Woolliams, J., Pong-Wong, R., Allen, A., McBride, S., Ryder, J., Wright, D., Skuce, R. & McDowell, S. (2014). Genome-wide association study identifies novel loci associated with resistance to bovine tuberculosis. Heredity, 112(5), 543-551.
  7. Bicalho, R., Galvão, K., Cheong, S., Gilbert, R., Warnick, L. & Guard, C. (2007). Effect of stillbirths on dam survival and reproduction performance in Holstein dairy cows. Journal of Dairy Science, 90(6), 2797-2803.
  8. Biswas, S. & Akey, J. M. (2006). Genomic insights into positive selection. Trends in Genetics, 22(8), 437-446.
  9. Brym, P., Bojarojć-Nosowicz, B., Oleński, K., Hering, D., Ruść, A., Kaczmarczyk, E. & Kamiński, S. (2016). Genome-wide association study for host response to bovine leukemia virus in Holstein cows. Veterinary Immunology and Immunopathology, 175, 24-35.
  10. Capra, M., Nuciforo, P.G., Confalonieri, S., Quarto, M., Bianchi, M., Nebuloni, M., Boldorini, R., Pallotti, F., Viale, G., Gishizky, M.L. & Draetta, G.F. (2006). Frequent alterations in the expression of serine/threonine kinases in human cancers. Cancer Research, 66(16), 8147-8154.
  11. Carramolino, L., Lee, B.C., Zaballos, A., Peled, A., Barthelemy, I., Shav-Tal, Y., Prieto, I., Carmi, P., Gothelf, Y., De Buitrago, G.G. & Aracil, M. (1997). SA-1, A nuclear protein encoded by one member of a novel gene family: molecular cloning and detection in hemopoietic organs. Gene, 195(2), 151-159.
  12. Curi, R., Lagranha, C.J., Doi, S.Q., Sellitti, D.F., Procópio, J., Pithon‐Curi, T.C., Corless, M. & Newsholme, P. (2005). Molecular mechanisms of glutamine action. Journal of Cellular Physiology, 204(2), 392-401.
  13. Curi, R., Newsholme, P., Procopio, J., Lagranha, C., Gorjão, R., & Pithon-Curi, T. C. (2007). Glutamine, gene expression, and cell function. Front Biosci, 12(1), 344-357.
  14. D'angelino, J., Garcia, M. & Birgel, E. (1998). Epidemiological study of enzootic bovine leukosis in Brazil. Tropical Animal Health and Production, 30, 13-15.
  15. Demasius, W., Weikard, R., Hadlich, F., Müller, K. E. & Kühn, C. (2013). Monitoring the immune response to vaccination with an inactivated vaccine associated to bovine neonatal pancytopenia by deep sequencing transcriptome analysis in cattle. Veterinary Research, 44(1), 93.
  16. Dong, Y., Xie, M., Jiang, Y., Xiao, N., Du, X., Zhang, W., Tosser-Klopp, G., Wang, J., Yang, S., Liang, J. & Chen, W. (2013). Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nature Biotechnology, 31(2), 135-141.
  17. Forough Ameri, N., Asadi Foozi, M. & Esmailizadeh Koshkoiyeh, A. (2016). Whole-genome scan of eight Iranian native cattle breeds to detect selection signatures. Animal Production, 18(2), 201-213. (In Farsi)
  18. Gibson, J. & Bishop, S. (2005). Use of molecular markers to enhance resistance of livestock to disease: a global approach. Revue Scientifique et Technique-Office International Des Epizooties, 24(1), 343.
  19. Gottschau, A., Willeberg, P., Franti, C. & Flensburg, J. (1990). The effect of a control program for enzootic bovine leukosis: changes in herd prevalence in Denmark, 1969-1978. American Journal of Epidemiology, 131(2), 356-364.
  20. Goyal, P., Behring, A., Kumar, A. & Siess, W. (2011). STK35L1 associates with nuclear actin and regulates cell cycle and migration of endothelial cells. Plos One, 6(1), e16249.
  21. Grupp, K., Wilking, J., Prien, K., Hube-Magg, C., Sirma, H., Simon, R., Steurer, S., Budäus, L., Haese, A., Izbicki, J. & Sauter, G. (2014). High RNA-binding motif protein 3 expression is an independent prognostic marker in operated prostate cancer and tightly linked to ERG activation and PTEN deletions. European Journal of Cancer, 50(4), 852-861.
  22. Guacci, V., Koshland, D. & Strunnikov, A. (1997). A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell, 91(1), 47-57.
  23. Gutiérrez, G., Carignano, H., Alvarez, I., Martínez, C., Porta, N., Politzki, R., Gammella, M., Lomonaco, M., Fondevila, N., Poli, M. & Trono, K. (2012). Bovine leukemia virus p24 antibodies reflect blood proviral load. BMC Veterinary Research, 8(1), 187.
  24. Haeussinger, D. & Schliess, F. (2007). Glutamine metabolism and signaling in the liver. Front Biosci, 12(1), 371-391.
  25. Hayes, B.J., Chamberlain, A.J., Maceachern, S., Savin, K., McPartlan, H., MacLeod, I., Sethuraman, L. & Goddard, M.E. (2009). A genome map of divergent artificial selection between Bos taurus dairy cattle and Bos taurus beef cattle. Animal Genetics, 40(2), 176-184.
  26. Howard, J. L. (1993). Current veterinary therapy 3: Food Animal Practice (Vol. 3): WB Saunders Company.
  27. Huxley, J. & Whay, H. (2006). Current attitudes of cattle practitioners to pain and the use of analgesics in cattle. Veterinary Record, 159(20), 662-668.
  28. Jacobsen, K., Kaneene, J., Miller, J. & Bull, R. (1985). Comparison of the commercial agar-gel immunodiffusion test and radioimmunoprecipitation assay for detection of antibodies to bovine leukemia virus. American Journal of Veterinary Research, 46(7), 1430-1433.
  29. Kazemimanesh, M., Madadgr, O., Mahzoonieh, M., Zahraei, S. T. & Steinbach, F. (2012). A serological study on bovine leukemia virus infection in ten provinces of Iran between 2010 and 2012. Iranian Journal of Virology, 6(3), 1-7.
  30. Khatami, F., Larijani, B., Heshmat, R., Keshtkar, A., Mohammadamoli, M., Teimoori-Toolabi, L., Nasiri, S., & Tavangar, S.M. (2017). Meta-analysis of promoter methylation in eight tumor-suppressor genes and its association with the risk of thyroid cancer. Plos One, 12(9), p.e0184892.
  31. Kreitman, M. (2000). Methods to detect selection in populations with applications to the human. Annual Review of Genomics and Human Genetics, 1(1), 539-559.
  32. LaDronka, R. M., Ainsworth, S., Wilkins, M. J., Norby, B., Byrem, T. M. & Bartlett, P. C. (2018). Prevalence of bovine leukemia virus antibodies in US dairy cattle. Veterinary Medicine International, 2018.
  33. Lamore, S.D., Ahlberg, E., Boyer, S., Lamb, M.L., Hortigon-Vinagre, M.P., Rodriguez, V., Smith, G.L., Sagemark, J., Carlsson, L., Bates, S.M. & Choy, A.L. (2017). Deconvoluting kinase inhibitor induced cardiotoxicity. Toxicological Sciences, 158(1), 213-226.
  34. Lewin, H. A., Russell, G. C. & Glass, E. J. (1999). Comparative organization and function of the major histocompatibility complex of domesticated cattle. Immunological Reviews, 167(1), 145-158.
  35. MacEachern, S., Hayes, B., McEwan, J. & Goddard, M. (2009). An examination of positive selection and changing effective population size in Angus and Holstein cattle populations (Bos taurus) using a hight density SNP genotyping platform and the contribution of ancient polymorphism to genomic diversity in Domestic cattle. BMC Genomics, 10(1), 181.
  36. Mancini, G., Gargani, M., Chillemi, G., Nicolazzi, E. L., Marsan, P. A., Valentini, A. & Pariset, L. (2014). Signatures of selection in five Italian cattle breeds detected by a 54K SNP panel. Molecular Biology Reports, 41(2), 957-965.
  37. McKenna, M.C. (2007). The glutamate‐glutamine cycle is not stoichiometric: Fates of glutamate in brain. Journal of Neuroscience Research, 85(15), 3347-3358.
  38. Mee, J., Berry, D. & Cromie, A. (2011). Risk factors for calving assistance and dystocia in pasture-based Holstein-Friesian heifers and cows in Ireland. The Veterinary Journal, 187(2), 189-194.
  39. Minozzi, G., Williams, J.L., Stella, A., Strozzi, F., Luini, M., Settles, M.L., Taylor, J.F., Whitlock, R.H., Zanella, R. & Neibergs, H.L. (2012). Meta-analysis of two genome-wide association studies of bovine paratuberculosis. Plos One, 7(3), e32578.
  40. Miyasaka, T., Takeshima, S.N., Jimba, M., Matsumoto, Y., Kobayashi, N., Matsuhashi, T., Sentsui, H. & Aida, Y. (2013). Identification of bovine leukocyte antigen class II haplotypes associated with variations in bovine leukemia virus proviral load in Japanese Black cattle. Tissue Antigens, 81(2), 72-82.
  41. Mohammadi, V., Atyabi, N. & Nikbakht, B. (2011). Seroprevalence of bovine leukemia virus in some dairy farms in Iran. Global Veterinaria, 7(3), 305-309.
  42. Moradi, M., Phua, S., Hedayat, N., Khodaei, M. M. & Razmkabir, M. (2017). Haplotype and Genetic Diversity of mtDNA in Indigenous Iranian Sheep and an Insight into the History of Sheep Domestication. Journal of Agricultural Science and Technology, 19(3), 591-601.
  43. Moradi, M. H., Nejati-Javaremi, A., Moradi-Shahrbabak, M., Dodds, K. G. & McEwan, J. C. (2012). Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genetics, 13(1), 10.
  44. Mousavi, S., Haghparast, A., Mohammadi, G. & Tabatabaeizadeh, S.-E. (2014). Prevalence of bovine leukemia virus (BLV) infection in the northeast of Iran. Veterinary Research Forum, 5(2), 135-9.
  45. Murphy, F. A., Gibbs, E. P. J., Horzinek, M. C. & Studdert, M. J. (1999). Veterinary Virology: Elsevier. Oct 27
  46. Neibergs, H.L., Seabury, C.M., Wojtowicz, A.J., Wang, Z., Scraggs, E., Kiser, J.N., Neupane, M., Womack, J.E., Van Eenennaam, A., Hagevoort, G.R. & Lehenbauer, T.W. (2014). Susceptibility loci revealed for bovine respiratory disease complex in pre-weaned holstein calves. BMC Genomics, 15(1), 1164.
  47. Nekoei, S., Taktaz Hafshejani, T., Doosti, A. & Khamesipour, F. (2015). Molecular detection of bovine leukemia virus in peripheral blood of Iranian cattle, camel and sheep. Polish Journal of Veterinary Sciences, 18(4), 703-7.
  48. Nielsen, R. (2005). Molecular signatures of natural selection. Annual Reviwe Genetics, 39, 197-218.
  49. Nurjhan, N., Bucci, A., Perriello, G., Stumvoll, M., Dailey, G., Bier, D.M., Toft, I., Jenssen, T.G. & Gerich, J.E. (1995). Glutamine: A major gluconeogenic precursor and vehicle for interorgan carbon transport in man. The Journal of Clinical Investigation, 95(1), 272-277.
  50. Ponomaryova, A.A., Rykova, E.Y., Cherdyntseva, N.V., Skvortsova, T.E., Dobrodeev, A.Y., Zav’yalov, A.A., Bryzgalov, L.O., Tuzikov, S.A., Vlassov, V.V. & Laktionov, P.P. (2013). Potentialities of aberrantly methylated circulating DNA for diagnostics and post-treatment follow-up of lung cancer patients. Lung Cancer, 81(3), 397-403.
  51. Prabhu, V.V. & Devaraj, N. (2017). Regulating RNA Binding Motif 5 Gene Expression− A Novel Therapeutic Target for Lung Cancer. Journal of Environmental Pathology, Toxicology and Oncology, 36(2).
  52. Prudêncio, M., Rodrigues, C.D., Hannus, M., Martin, C., Real, E., Gonçalves, L.A., Carret, C., Dorkin, R., Röhl, I., Jahn-Hoffmann, K. & Luty, A.J. (2008). Kinome-wide RNAi screen implicates at least 5 host hepatocyte kinases in Plasmodium sporozoite infection. PLoS Pathog, 4(11), e1000201.
  53. Qanbari, S., Gianola, D., Hayes, B., Schenkel, F., Miller, S., Moore, S., Thaller, G. & Simianer, H. (2011). Application of site and haplotype-frequency based approaches for detecting selection signatures in cattle. BMC Genomics, 12(1), 1-12.
  54. Radostitis, E., Gay, C., Blood, D. & Hinchcliff, K. (2000). Veterinary Medicine, 9th Edition. WB Saunders, London, 1881.
  55. Sakurai, T., Kashida, H., Komeda, Y., Nagai, T., Hagiwara, S., Watanabe, T., Kitano, M., Nishida, N., Fujita, J. & Kudo, M. (2017). Stress response protein RBM3 promotes the development of colitis-associated Cancer. Inflammatory Bowel Diseases, 23(1), 66-74.
  56. Schoepf, K., Kapaga, A., Masami, H. & Hyera, J. (1997). Serological evidence of the occurrence of enzootic bovine leukosis (EBL) virus infection in cattle in Tanzania. Tropical animal health and production, 29(1), 15-19.
  57. Sharif, S., Mallard, B., Wilkie, B., Sargeant, J., Scott, H., Dekkers, J. & Leslie, K. (1998). Associations of the bovine major histocompatibility complex DRB3 (BoLA‐DRB3) alleles with occurrence of disease and milk somatic cell score in Canadian dairy cattle. Animal Genetics, 29(3), 185-193.
  58. Stephen, J.K., Chitale, D., Narra, V., Chen, K.M., Sawhney, R. & Worsham, M.J. (2011). DNA methylation in thyroid tumorigenesis. Cancers, 3(2), 1732-1743.
  59. Stella, A., Ajmone-Marsan, P., Lazzari, B. & Boettcher, P. (2010). Identification of selection signatures in cattle breeds selected for dairy production. Genetics, 185(4), 1451-1461.
  60. Stumvoll, M., Perriello, G., Meyer, C. & Gerich, J. (1999). Role of glutamine in human carbohydrate metabolism in kidney and other tissues. Kidney International, 55(3), 778-792.
  61. Sumara, I., Vorlaufer, E., Gieffers, C., Peters, B. H. & Peters, J.-M. (2000). Characterization of vertebrate cohesin complexes and their regulation in prophase. The Journal of Cell Biology, 151(4), 749-762.
  62. Teo, Y. Y., Fry, A. E., Clark, T. G., Tai, E. & Seielstad, M. (2007). On the usage of HWE for identifying genotyping errors. Annals of Human Genetics, 71(5), 701-703.
  63. Tizard, I. (2004). Acquired immunity: antigen-presenting receptors. Veterinary Immunology: an introduction. Elsevier, Philadelphia, PA, USA, 153, 67-77.
  64. Udina, I., Karamysheva, E., Turkova, S., Orlova, A. & Sulimova, G. (2003). Genetic mechanisms of resistance and susceptibility to leukemia in Ayrshire and black pied cattle breeds determined by allelic distribution of gene Bola-DRB3. Russian Journal of Genetics, 39(3), 306-317.
  65. Urbinati, I., Stafuzza, N.B., Oliveira, M.T., Chud, T.C.S., Higa, R.H., de Almeida Regitano, L.C., de Alencar, M.M., Buzanskas, M.E. & Munari, D.P. (2016). Selection signatures in Canchim beef cattle. Journal of Animal Science and Biotechnology, 7(1), 1-9.
  66. Vlahov, N., Scrace, S., Soto, M.S., Grawenda, A.M., Bradley, L., Pankova, D., Papaspyropoulos, A., Yee, K.S., Buffa, F., Goding, C.R. & Timpson, P. (2015). Alternate RASSF1 transcripts control SRC activity, E-cadherin contacts, and YAP-mediated invasion. Current biology, 25(23), 3019-3034.
  67. Wang, S. S., Betz, A. G. & Reed, R. R. (2002). Cloning of a novel Olf-1/EBF-like gene, O/E-4, by degenerate oligo-based direct selection. Molecular and Cellular Neuroscience, 20(3), 404-414.
  68. Weir, B. S. & Cockerham, C. C. (1984). Estimating F‐statistics for the analysis of population structure. Evolution, 38(6), 1358-1370.
  69. Welbourne, T., Childress, D. & Givens, G. (1986). Renal regulation of interorgan glutamine flow in metabolic acidosis. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 251(5), 859-866.
  70. Welbourne, T. C. & Matthews, J. C. (1999). Glutamate transport and renal function. American Journal of Physiology-Renal Physiology, 277(4), 501-505.
  71. Williams, J. G., Kubelik, A. R., Livak, K. J., Rafalski, J. A. & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18(22), 6531-6535.
  72. Wright, S. (1965). The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution, 395-420.
  73. Wu, G. (2009). Amino acids: metabolism, functions, and nutrition. Amino Acids, 37(1), 1-17.
  74. Yang, S., Li, X., Li, K., Fan, B. & Tang, Z. (2014). A genome-wide scan for signatures of selection in Chinese indigenous and commercial pig breeds. BMC Genetics, 15(1), 1-9.
  75. Yang, Z.-G., Ma, X.-D., He, Z.-H. & Guo, Y.-x. (2017). miR-483-5p promotes prostate cancer cell proliferation and invasion by targeting RBM5. International Braz Journal, 43(6), 1060-1067.
  76. Yasuda, Y., Miyamoto, Y., Yamashiro, T., Asally, M., Masui, A., Wong, C., Loveland, K.L. & Yoneda, Y. (2012). Nuclear retention of importin α coordinates cell fate through changes in gene expression. The EMBO Journal, 31(1), 83-94.