اثر منابع مختلف روی، بر عملکرد و آنزیم‌های کبد جوجه‌های گوشتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموختۀ کارشناسی ارشد و استادیار، گروه علوم دامی، دانشگاه آزاد اسلامی، واحد شهر قدس، تهران، ایران

2 استادیار، گروه علوم دامی، دانشگاه آزاد اسلامی، واحد شهر قدس، تهران، ایران

چکیده

برای مقایسه آثار منابع آلی، غیرآلی و هیدروکسی روی بر عملکرد رشد و آنزیم­های کبد جوجه گوشتی، آزمایشی با استفاده از 360 قطعه جوجه راس 308 در قالب طرح کاملاً تصادفی با 6 تیمار و 4 تکرار انجام شد. تیمارهای آزمایشی عبارت بودند از 1) شاهد منفی؛ بدون مکمل روی، 2) شاهد مثبت دارای 80 میلی­گرم سولفات روی در کیلوگرم جیره، 3) جیره دارای 80 میلی­گرم هیدروکسی‌کلراید روی در کیلوگرم جیره، 4) جیره دارای 60 میلی­گرم سولفات روی+ 20 میلی­گرم روی-متیونین در کیلوگرم جیره، 5) جیره دارای 40 میلی­گرم سولفات روی+ 40 میلی­گرم اکسید روی در کیلوگرم جیره، 6) جیره دارای 30 میلی­گرم سولفات روی + 30 میلی­گرم اکسید روی + 20 میلی­گرم روی-متیونین در کیلوگرم جیره. در پایان آزمایش، وزن نسبی بورس فابریسیوس و تیموس در مقایسه با گروه شاهد منفی کاهش یافت (05/0P<). منبع هیدروکسی‌کلراید روی مصرف خوراک را نسبت به گروه شاهد مثبت و افزایش وزن روزانه را در مقایسه با تیمارهای 1، 2 و 4 بهبود بخشید (05/0P<). فعالیت آلکالین فسفاتاز پلاسما در تیمارهای 5 و 6 نسبت به تیمارهای 3 و 4 افزایش معنی­داری نشان داد، ولی تفاوت معنی­داری در سطح لاکتات­دهیدروژناز، آسپارتات­آمینوترانسفراز و آلانین ­آمینوترانسفراز پلاسما در تیمارهای مختلف مشاهده نشد. یافته­ها نشان می­دهد منبع هیدروکسی‌کلراید روی آثار قابل مقایسه­ای با منابع غیرآلی و ترکیب منابع آلی و غیرآلی روی در جوجه گوشتی دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of different sources of Zn on performance and liver enzymes of broiler ‎chicks

نویسندگان [English]

  • Masood Azimi 1
  • Morteza Mehri 2
  • Fatemeh Shirmohammad 2
1 Former M.Sc. Student and Assistant Professor, Department of Animal Science, Islamic Azad University, Shahr-e-Qods Branch, ‎Tehran, Iran
2 Assistant Professor, Department of Animal Science, Islamic Azad University, Shahr-e-Qods Branch, Tehran, Iran
چکیده [English]

A 360 Ross 308 broilers were used in a completely randomized design with 6 treatments and 4 replicates with the objective of comparing the effects of different sources of zinc on growth performance and some liver enzymes. The experimental treatments were: 1) negative control (non-supplemented), 2) positive control with 80mg/kg zinc sulfate, 3) hydroxychloride Zn (80mg/kg), 4) zinc sulfate (60mg/kg) + Zn-Met (20mg/kg), 5) zinc sulfate (40mg/kg) + zinc oxide (40mg/kg) and 6) zinc sulfate (30mg/kg) + zinc oxide (30mg/kg) + Zn-Met (20mg/kg). After 42 days, relative weight of bursa of Fabricius  (except for treatment 4) and thymus (except for treatment 3) were decreased significantly compared with the  negative control group (P<0.05). The hydroxychloride Zn source improved feed intake, compared to positive control group and daily weight gain compared to treatments 1, 2 and 4 (P<0.05). The inclusion of zinc oxide in treatments 5 and 6 increased alkaline phosphatase activity in plasma compared to treatments 3 and 4 (P<0.05). But, there were no differences in plasma AST, ALT, and LDH levels among the zinc different sources. These findings show that hydroxychloride Zn have comparable effects with zinc of inorganic and combination of organic with inorganic sources in broiler chickens.  

کلیدواژه‌ها [English]

  • Alkaline Phosphatase
  • Hydroxychloride Zn
  • Zinc Sulfate
  • Zn-Met‎
  1. Abd El-Hack, M. E., Algawany, M., Amer, S. A., Arfm Wahdan, K. M. & El-Kholy, M. S. (2018). Effect of dietary supplementation of organic Zn on laying performance, egg quality & some biochemical parameters of laying hens. Journal of Animal Physiology and Animal Nutrition, 102(2), 542-549.
  2. Afshar Bakeshlou, A., Shirmohammad, F. & Mehri, M. (2020). Comparative effects of organic, inorganic and hydroxy zinc sources on performance of aged laying hen. Animal Science Journal.
    (in Press). (in Farsi)
  3. Ammerman, C. B., Baker, D. H. & Lewis, A. J. (1995). Bioavailability of nutrients for animals: amino acids, minerals and vitamins. Academic Press, San Diago, CA.
  4. AOAC International. (1995). Official Methods of Analysis. 15th ed. AOAC Int., Arlington, VA.
  5. Ashmead, H. D., Graff, D. J. & Ashmead, H. H. (1985). Intestinal absorption of metal ions and chelates. Charles C Thomas Publication, Springfield, Illinois, U.S.A.
  6. Bartlett, J. R. & Smith, M. O. (2003). Effects of different levels of zinc on the performance and immune competence of broilers under heat stress. Poultry Science, 82, 1580-1588.
  7. Batal, A. B., Parr, T. M. & Baker, D. H. (2001). Zinc bioavailability in tetra basic zinc chloride and the dietary zinc requirement of young chicks fed soy concentrate diet. Poultry Science, 80, 87-90.
  8. Bennett, P. M., Jepson, P. D., Law, R. J., Jones, B. R., Kuiken, T., Baker, J. R., Rogan, E. & Kirkwood, J. K. (2001). Exposure to heavy metals and infectious disease mortality in harbour porpoises from England and Wales. Environmental Pollution, 112, 33-40.
  9. Bertuzzi, S., Manfreda, G. & Franchini, A. (1998) Influence of dietary inorganic zinc and vitamin E on broiler immune response. Selezione Veterinaria, 8(9), 627-636.
  10. Cao, J., Henry, P. R., Davis, S. R., Cousins, R. J., Miles, R. D., Littell, R. C. & Ammerman C. B. (2002). Relative bioavailability of organic zinc sources based on tissue zinc and metallothionein in chicks fed conventional dietary zinc concentrations. Animal Feed Science and Technology, 101, 161-170.
  11. Cheng, J., E. T. Kornegay & T. Schell. (1998). Influence of dietary lysine on the utilization of zinc from zinc sulfate and a zinc-lysine complex by young pigs. Journal of Animal Science, 76, 1064-1074.
  12. Dewar, W. A., Wight, P. A., Rearson, R. A. & Genttel, M. J. (1983). Toxic effects of high concentrations of ZnO in the diet of the chick and laying hen. British Poultry Science, 2, 379-404.
  13. Edwards, H. M. & Baker, D. H. (2000). Zinc bioavailability in soybean meal. Journal of Animal Science, 78, 1017-1021.
  14. Edwards Jr., H. M. & Baker D. H. (1999). Bioavailability of zinc in several sources of zinc oxide, zinc sulfate, and zinc metal. Journal of Animal Science, 77, 2730-2735.
  15. Ensminger, M. E., Oldfield, J. E. & Heinemann, W. W. (1990). Feeds and Nutrition. (2nd ed.). The Ensminger Publishing Company. Clovis, CA.
  16. Fordyce, E. J., Forbes, R. M., Robbins, K. R. & Erdman Jr., J. W. (1987). Phytate×calcium/zinc molar ratios: Are they predictive of zinc bioavailability? Journal of Food Science, 52, 421-428.
  17. Ghale Sefidi, M. J., Shirmohammad, F. & Mehri, M. (2019). Effect of dietary inclusion of sulphate, hydroxychloride and organic complex sources of manganese on egg quality of aged laying hens. Iranian Journal of Animal Science, 50(2), 131-141. (in Farsi)
  18. Hegazy, S. M. & Adachi, Y. (2000). Comparison of the effects of dietary Selenium, Zinc and Selenium and Zinc supplementation on growth and immune response between chick groups that were inoculated with salmonella and aflatoxin or salmonella. Poultry Science, 79, 331-335.
  19. Hempe, J. M. & Cousins, R. J. (1989). Effect of EDTA and zinc-methionine complex on zinc absorption by rat intestine. Journal of Nutrition, 119, 1179-1187.
  20. Hojberg, O., Canibe, N., Poulsen, H., Hedeman, M. S. Hedemann, M. S. & Jensen, B. B. (2005). Influence of dietary zinc oxide and copper sulfate on the gastrointestinal ecosystem in newly weaned piglets. Applied and Environmental Microbiology, 71, 2267-2277.
  21. Huang. Y., Lu, L., Li, S.F., Luo, X. G. & Liu, B. (2014). Relative bioavailabilities of organic zinc sources with different chelation strengths for broilers fed a conventional corn-soybean meal diet. Journal of Animal Science, 87, 2038-2046.
  22. Idowu, O. M. O., Ajuwon, R. O., Oso, A. & Akinloye, O. A. (2011). Effect of Zinc supplementation on laying performance, serume, chemistry and Zn residue in tibia bone, liver, excreta and egg shell of laying hens. International Journal of Poultry Science, 10, 225-230.
  23. Ivanisinova, O., Gresakova, L., Ryzner, M. & Ocelova, V. (2016). Effects of feed supplementation with various zinc sources on mineral concentration and selected antioxidant indices in tissues and plasma of broiler chickens. Acta Veterinaria Brno, 85, 285-291.
  24. Jahanian, R., Nassiri Moghaddam, H. & Rezaei, A. (2008). Improved broiler chick performance by dietary supplementation of organic zinc sources. Asian-Australasian Journal of Animal Science, 21(9), 1348-1354.
  25. Karamouz, H., Aghdam Shahriar, H., Ghiasi Ghale-Kandi, J. & Ghorbani, A. (2009). The effects of different levels of zinc oxide supplementation on small intestine enzaline phosphatase activity in male broilers. In: Proceedings of 2nd Conference on Agricultural Biotechnology, 15-16 Jul, Shahid Bahonar University, Kerman, Iran. (in Farsi)
  26. Lan-xia, Z., Zheng-xiang, S., Xin-ying, W., Ai-lian, G. & Bao-ming, L. (2006). Effects of ultraviolet radiation on skeleton development of broiler chickens. Agricultural Science in China, 5(4), 313-317.
  27. Liu, Z. H., Lu, L., Li, S. F., Zhang. L. Y., Xi, L., Zhang, K. Y. & Luo, X. G. (2011). Effects of supplemental zinc source and level on growth performance, carcass traits, and meat quality of broilers. Poultry Science, 90, 1782-1790.
  28. Mabe, I., Rapp, C., Bain, M. M. & Nys, Y. (2003). Supplementation of corn-soybean meal diet with manganese, copper, and zinc from organic or inorganic sources improves eggshell quality in aged laying hens. Poultry Science, 82, 1903-1913.
  29. MacDonald, R. S. (2000). The role of zinc in growth and cell proliferation. Journal of Nutrition, 130, 1500-1508.
  30. McDowell, L. R. (2003). Zinc. In: L. R. McDowell (Ed), Minerals in Animal and Human Nutrition. (pp. 357-395) Elsevier Science.
  31. Mohanna, C. & Nys, Y. (1999) Changes in zinc and manganese availability in broiler chicks induced by vegetal and microbial phytases. Animal Feed Science and Technology, 77, 241-253.
  32. Mwangi, S., Timmons, J., Ao, T., Paul, M., Macalintal, L., Pescatore, A., Cantor, A., Ford, M. & Dawson, K. A. (2017). Effect of zinc imprinting and replacing inorganic zinc with organic zinc on early performance of broiler chicks. Poultry Science, 96(4), 861-868
  33. Nakajima, S., Hira, T., Iwaya, H. & Hara, H. (2016). Zinc directly stimulates cholecystokinin secretion from enteroendocrine cells and reduces gastric emptying in rats. Molecular and Cellular Endocrinology, 15, 108-114.
  34. Norouzi, E., Daneshyar, M. & Farhoomand, P. (2014). Effects of zinc acetate and magnesium sulfate on performance, carcass characteristics and blood indices of broilers under heat stress condition. Animal Science Researches, 24(2), 83-93. (in Farsi)
  35. NRC. (2007). Nutrient Requirements of Poultry. 9th Rev. Ed National Academy Press, Washington, D.C.
  36. Olukosi, O. A., van Kuijk, S. J. A. & Han, Y. (2019). Sulfate and hydroxychloride trace minerals in poultry diets-comparative effects on egg production and quality in laying hens, and growth performance and oxidative stress response in broilers. Poultry Science, 98(10), 4961-4971.
  37. Park, S. Y., Birkhold, S. G., Kubena, L. F., Nisbet, D. J. & Ricke, S. C. (2004) Review on the role of dietary Zn in poultry nutrition, immunity, and reproduction. Biological Trace Element Research, 101, 147-163.
  38. Peterson, D. G., Scrimgeour, A. G., McClung, J. P. & Koutsos, E. A. (2008). Moderate zinc restriction affects intestinal health and immune function in lipopolysaccharide-challenged mice. Journal of Nutritional Biochemistry, 19(3), 193-199.
  39. Rink, L. & Haase, H. (2007). Zinc homeostasis and immunity. Trends Immunology, 28(1), 1-4.
  40. Rossi, P., Rutz, M. A., Aniciuti, J. L. Rech, J.L. & Zauk, N. H. F. (2007). Influence of graded levels of organic zinc on growth performance and carcass traits of broilers. Journal of Applied Poultry Research, 16, 219-225.
  41. Sajadifar, S. A., Naghashan, H. Z. & Shcherbakov, O. V. (2012). Effect of zinc on metalloenzymes activity and some blood parameters in broiler chicks vaccinated against coccidiosis. Biological Journal of Armenia, 3(64), 87-90.
  42. Salim, H. M., Jo, C. & Lee, B. D. (2008). Zinc in broiler feeding and nutrition. Avian Biology Research, 1, 5-18.
  43. Sandoval, M., Henry, P. R., Littell, R. C., Miles, R. D., Butcher G. D. & Ammerman C. B. (1997). Effect of dietary zinc source and method of oral administration on performance and tissue trace mineral concentration of broiler chicks. Journal of Animal Science, 77, 1788-1799.
  44. Sarac, F. & Saygili, F. (2007). Causes of high bone alkaline phosphatase. Biotechnology and Biotechnological Equipment, 21, 194-197.
  45. SAS. (2014). Statistical Analysis Systems, Version 9.4. Cary, NC: SAS Institute Inc.
  46. Shankar, A. H. & Prasad, A. S. (1998). Zinc and immune function: the biological basis of altered resistance to infection. American Journal of Clinical Nutrition, 68(2), 447S-463S.
  47. Sharideh, H., Zhandi, M., Zaghari, M. & Akhlaghi, A. (2015). Effect of dietary zinc oxide and phytase on the plasma metabolites and enzyme activities in aged broiler breeder hens. Iranian Journal of Veterinary Medicine, 9(4), 263-270.
  48. Sohrabi, A., Mehri, M. & Shirmohammad, F. (2020). Comparative effects of organic, inorganic and hydroxy Mn, Zn, and Cu sources on performance of aged laying hens. Animal Production Research, (in Press). (in Farsi)
  49. Star, L., van Der Klis, J. D., Rapp, C. & Ward, T. L. (2012). Bioavailability of organic and organic zinc sources in male broilers. Poultry Science, 91, 3115-3120.
  50. Sunder, G., Panda, A. K., Gopinath, N. C. S., Rama Rao, S. V., Raju, M. V. L. N., Reddy, M. R. & Vijay Kumar, Ch. (2008). Effects of higher levels of zinc supplementation on performance, Mineral availability and immune competence in broiler chickens. Journal of Applied Poultry Research, 17, 79-86.
  51. Swiatkiewicz, S., Arczewska-Wlosek, A. & Jozefiak, D. (2014). The efficacy of organic minerals in poultry nutrition: review and implications of recent studies. World’s Poultry Science Journal, 70, 475-485
  52. Viera, S. L. (2008). Chelated minerals for poultry. Brazilian Journal of Poultry Science, 10, 73-79.
  53. Virden, W. S., Yeatman, J. B., Barber, S. J., Willeford, K. O., Ward, T. L., Fakler, T. M., Wideman, R. F. & Kidd, M. T. (2004). Immune system and cardiac functions of progeny chicks from dams fed diets differing in zinc and manganese level and source. Poultry Science, 83(3), 344-351.
  54. Wedekind, K. J., Hortin, A. E. & Baker D. H. (1992). Methodology for assessing zinc bioavailability: Efficacy estimates for Zn-methionine, Zn sulfate, and Zn oxide. Journal of Animal Science, 70, 178-187.
  55. Yan, F. & Waldroup, P.W. (2006). Evaluation of MINTREX® manganese as manganese for young broiler. International Journal of Poultry Science, 5, 708-713.