بررسی کارایی تغذیه‌ای نمک‌های کلسیمی پوشش‌دار روغن ماهی در شرایط برون و درون‌تنی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشکده کشاورزی، دانشگاه ارومیه

2 استاد، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج

3 استاد، دانشکده کشاورزی، دانشگاه ارومیه

4 دانشجوی دورۀ دکتری، دانشکده کشاورزی، دانشگاه ارومیه

چکیده

در این پژوهش، ارزیابی میزان مواد مغذی و الگوی اسیدهای چرب، میزان مقاومت در برابر هیدروژنه شدن زیستی (بیوهیدروژناسیون) شکمبه‌ای، میزان آزادسازی روغن در نمک‌های کلسیمی پوشش­دار روغن ماهی در شرایط آزمایشگاهی اثر این نمک­ها در شرایط درون تنی بر میزان گوارش‌پذیری مواد مغذی و فراسنجه­های مایع شکمبه در مقایسه با روغن ماهی و نمک‌های کلسیمی بدون پوشش با استفاده از دام‌های فیستولادار مطالعه شد. پوشش­دار کردن منابع کلسیمی سبب افزایش کارایی محافظتی اسیدهای چرب غیراشباع در شکمبه شد (05/0P<). پوشش‌دار کردن مکمل‌های کلسیمی تفاوت معنی‌داری در میزان آزادسازی شکمبه‌ای مکمل‌ها ایجاد کرد ولی تفاوتی در میزان آزادسازی روغن از ترکیب مکمل‌ها در دیگر بخش‌های دستگاه گوارش و میزان آزادسازی در کل دستگاه گوارش وجود نداشت (05/0‌P<). مکمل‌های محافظت‌شده در مقایسه با روغن آزاد، سبب افزایش گوارش‌پذیری مواد مغذی مختلف شدند (05/0P<). استفاده از روغن ماهی به‌صورت محافظت نشده موجب کاهش میزان تولید استات و افزایش پروپیونات و کاهش میزان نیتروژن آمونیاکی و جمعیت پروتوزوآ شکمبه شد. بود یا نبود پوشش روی نمک‌های کلسیمی تأثیری در ارتباط با فراسنجه‌های شکمبه نداشت (05/0‌P>). پوشش‌دهی مکمل‌های کلسیمی سبب افزایش محافظت اسیدهای چرب غیراشباع در برابر هیدروژنه شدن زیستی شکمبه‌ای شده و تأثیر نامطلوبی بر شاخصه‌های مختلف تغذیه‌ای حیوانات نداشت. استفاده از میزان پوشش 10 درصد وزنی را می‌توان بهترین میزان پوشش با توجه به داده‌های مربوط به ترکیب شیمیایی، الگوی اسیدهای چرب، هیدروژنه شدن زیستی و آزادسازی در بخش‌های مختلف دستگاه گوارش دانست.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Nutritional efficiency of encapsulated fish oil ca-salts in vitro and in vivo

نویسندگان [English]

  • Hamed Khalilvandi-Behroozyar 1
  • Mehdi Dehghan-Banadaky 2
  • Rasoul Pirmohammadi 3
  • Behzad AsadnEjad 4
1 Assistant Professor, Faculty of Agriculture, Urmia University, Urmia, Iran
2 Professor, University College of Agriculture & Natural Recouces, University of Tehran, Karaj, Iran
3 Professor, Faculty of Agriculture, Urmia University, Urmia, Iran
4 Ph.D. Candidate, Faculty of Agriculture, Urmia University, Urmia, Iran
چکیده [English]

In this research encapsulated fish oil Ca-salts were produced by using a saturated FA containing material and evaluated. Nutrient content and FA profiles of produced supplements were determined and ruminal biohydrogenation and oil releasing were examined in vitro. Additionally, in a complementary in vivo experiment, effects of dietary inclusion of fish oil, ca-salts and encapsulated ca-salts on nutrient digestibility and ruminal paramerters were evaluated using three rumen fistulated Holstein cows. Encapsulation of Ca-Salts increased protection efficiency of PUFA against ruminal biohydrogenation. Encapsulated ca-salts with 10 % of wall material (weight basis) had lower biohydrogenation afer 48-h in vitro incubation (P˂ 0.05). Encapsulation of ca-salts decreased rumen oil release but oil release in other simulated media or total tract oil release were not affected by encapsulation (P˃ 0.05). Protected supplements increased nutrient digestibility compared with fish oil (P˂ 0.05). Non-encapsulated fish oil decreased acetate and rumen N-NH3 concentration as well as protozoa `population, but increased propionic acid concentration (P˂0.05). Encapsulation of Ca-Salt did not change rumen parameters (P˃ 0.05). According to the results, it can be concluded that encapsulation of ca-salts increased protection of PUFA against ruminal biohydrogenation without worse effects on rumen parameters. Encapsulation with 10 % of wall material (weight basis) can be presented as the best treatment according to chemical composition, fatty acid profiles, rumen biohydrogenation and oil release results.

کلیدواژه‌ها [English]

  • Encapsulation
  • Omega-3
  • PUFA
  • Ruminal protection
  1. AbuGhazaleh, A. A. & Jenkins, T. C. (2004). Short communication: Docosahexaenoic acid promotes vaccenic acid accumulation in mixed ruminal cultures when incubated with linoleic acid. Journal of Dairy Science, 87(4), 1047-1050.
  2. AOAC. (2000). Official Methods of Analysis. (17th ed.) Association of Official Analytical Chemists. Washington D.C.
  3. Bauman, D. E., Perfield, J. W., De Veth, M. J. & Lock, A. L. (2003). New perspectives on lipid digestion and metabolism in ruminants. Proc. Cornell Nutrition Conference. pp. 175‑189.
  4. Block, E., Chalupa, W., Evans, E., Jenkins, T., Moate, P., Palmiquist, D. & Sniffen, C. (2005). Calcium salts are highly digestible. Feedstuffs, 77(1), 55-71.
  5. Broderick, G. A. & Kang, J. H. (1980). Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science, 63(1), 64-75.
  6. Castaneda-Gutierrez, E., DeVeth, M. J., Lock, A. L., Dwyer, D. A., Murphy, K. D. & Bauman, D. E. (2007). Effect of supplementation with calcium salts of fish oil on n-3 fatty acids in milk fat. Journal of Dairy Science, 90(9), 4149-4156.
  7. Chilliard, Y., Ferlay, A., Mansbridge, R. M. & Doreau, M. (2000). Ruminant milk fat plasticity: nutritional control of saturated, polyunsaturated, Trans and conjugated fatty acids. Annals De Zootechnica, 49(1), 181-205.
  8. Chilliard, Y., Glasser, F., Ferlay, A., Bernard, L., Rouel, J. & Doreau, M. (2007). Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Europian Journal of Lipid Science and Technology, 109(8), 828-855.
  9. Chouinard, P. Y., Girard, V. & Brisson, G. J. (1998). Fatty acid profile and physical properties of milk fat from cows fed Ca-SFA with varying unsaturation. Journal of Dairy Science, 81(2), 471-481.
  10. Christensen, R. A., Clark, J. H., Drackley, J. K. & Blum, S. A. (1998). Fatty acid flow to the duodenum and in milk from cows fed diets that contained fat and nicotinic acid. Journal of Dairy Science, 81(4), 1078-1088.
  11. Dehority, B. A. (2003). Rumen Microbiology. Nottingham University Press, Nottingham, UK.
  12. Demeyer, D. I. (1999). Targets and procedures for altering ruminant meat and milk lipids. Proceedings of Nutrition Society, 58(3), 593-607.
  13. Dohme, F., Fievez, V., Raes, K. & Demeyer, D. I. (2003). Increasing levels of two different fish oils lower ruminal biohydrogenation of Eicosapentaenoic and Docosahexaenoic acid in vitro. Animal Research, 52(4), 309-320
  14. Doreau, M. & Chilliard, Y. (1997). Effects of ruminal or postruminal fish oil supplementation on intake and digestion in dairy cows. Reproduction Nutrition Development, 37(1), 113-124.
  15. Doreau, M. & Ferlay, A. (1995). Effect of dietary lipids on nitrogen metabolism in the rumen: a review. Livestock Production Science, 43(1), 97-110.
  16. Doreau, M., Demeyer, D. I. & VanNevel, C. J. (1997). Transformation and effects of unsaturated fatty acids in the rumen: consequences on milk fat secretion. In: Welch, R.A.S., Burns, D.J.W., Davis, S.R., Popay, A.I. and Prosser, C.G. (Eds.) Milk Composition, Production and Biotechnology. CAB International. Wallingford, Oxford shire, UK. pp: 73‑92.
  17. Elliott, J. P., Drackley, J. K. & Weigel, D. J. (1996). Digestibility and effects of hydrogenated palm fatty acid distillate in lactating dairy cows. Journal of Dairy Science, 79(6), 1031-1039.
  18. Enjalbert, F., Eynard, P., Nicot, M. C., Troegeler-Meynadier, A., Bayourthe, C. & Moncoulon, R. (2003). In Vitro versus in Situ ruminal biohydrogenation of unsaturated fatty acids from a aaw or extruded mixture of ground canola seed/canola meal. Journal of Dairy Science, 86(2), 351-359.
  19. FASS. (2010). Guide for the Care and Use of Agricultural Animals in Agricultural Research and Teaching. 3rd rev. ed. Federation of Animal Sciences Societies Savoy, IL.
  20. Ferlay, A., Chilliard, Y. & Doreau, M. (1992). Effects of calcium salts differing in fatty acid composition on duodenal and milk fatty acid profiles in dairy cows. Journal of Science of Food and Agriculture, 60(1), 31-37.
  21. Fievez, V., Dohme, F., Danneels, M., Raes, K. & Demeyer, D. (2003). Fish oils as potent rumen methane inhibitors and associated effects on rumen fermentation in vitro and in vivo. Animal Feed Science and Technology, 104(1), 41–58.
  22. Fievez, V., Vlaeminck, B., Jenkins, T., Enjalbert, F. & Doreau, M. (2007). Assessing rumen biohydrogenation and its manipulation in vivo, in vitro and in situ. Europian Journal of Lipid Science and Technology, 109(8), 740-756.
  23. Folch, J., Lees, M. & Stanley, G. H. S. (1957). A simplified method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226(1), 497-509.
  24. Fotouhi, N. & Jenkins, T. C. (1992). Resistance of fatty acyl amides to degradation and hydrogenation by ruminal microorganisms. Journal of Dairy Science, 75(6), 1527-1532.
  25. Ganjkhanlou, M. (2010). PhD dissertation. Department of Animal Science. University of Tehran.
  26. Gulati, S. K., Scott, T. W. & Ashes, J. R. (1997). In-vitro assessment of fat supplements for ruminants. Animal Feed Science and Technology, 64(1), 127-132.
  27. Harfoot, C. G. & Hazlewood G. P. (1997). Lipid metabolism in the rumen. Pages 382-426.In: The rumen Microbial Ecosystem. London, UK.
  28. Hristov, A. N., Ivan, M. & McAllister, T. A. (2004). In vitro effects of individual fatty acids on protozoal numbers and on fermentation products in ruminal fluid from cattle fed a high-concentrate, barley-based diet. Journal of Animal Science, 82(9), 2693-2704.
  29. Hristov, A. N., Ivan, M., Neill, L. & McAllister, T. A. (2003). Evaluation of several potential bioactive agents for reducing protozoal activity in vitro. Animal Feed Science and Technology, 105(1), 163-184.
  30. Huws, S. A., Lee, M. R. F., Muetzel, S. M., Scott, M. B., Wallace, R. J. & Scollan, N. D. (2010). Forage type and fish oil cause shifts in rumen bacterial diversity. FEMS Microbiological Ecology, 73(2), 396-407.
  31. Ichihara, K. I. & Fukubayashi, Y. (2010). Preparation of fatty acid methyl esters for gas-liquid chromatography. Journal of Lipid Research, 51(3), 635-640.
  32. Jenkins, T. C. (1993). Lipid Metabolism in the Rumen. Journal of Dairy Science, 76(12), 3851-3863.
  33. Jenkins, T. C. & Bridges, W. C. (2007). Protection of fatty acids against ruminal biohydrogenation in cattle. Europian Journal of Lipid Science and Technology, 109, 778-789.
  34. Jenkins, T. C. & Palmquist, D. L. (1984). Effect of fatty acids or calcium salts on rumen and total nutrient digestibility of dairy rations. Journal of Dairy Science, 67(5), 978-986.
  35. Jenkins, T. C., Wallace, R. J., Moate, P. J. & Mosley, E. E. (2008). Board-invited review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. Journal of Animal Science, 86(2), 397-412.
  36. Kepler, C. R., Hirons, K. P., McNeill, J. J. & Tove, S. B. (1966). Intermediates and products of the biohydrogenation of linoleic acid by Butyrivibrio fibrisolvens. Journal of Biological Chemistry, 241(6), 1350-1354.
  37. Khalilvandi-Behroozyar, H., Dehghan-Banadaky, M, Ghaffarzadeh, M., Rezayazdi, K., Kohram, H. & Asad Nejad, B. (2015). Production and in vitro evaluation of microencapsulated fish oil: Nutritive value and biohydrogenation resistance compared with fish oil ca-salts. Journal of Ruminants Research, 2(1), 81-108. (in Farsi)
  38. Klein, C. M. & Jenkins, T. C. (2011). Docosahexaenoic acid elevates trans-18:1 isomer but is not directly converted into trans-18:1 isomer in ruminal batch cultures. Journal of Dairy Science, 94(9), 4676-4683.
  39. Klusmeyer, T. H., Lynch, G. L., Clark, J. H. & Nelson, D. R. (1991). Effects of calcium salts of fatty acids and proportion of forage in diet on ruminal fermentation and nutrient flow to duodenum of cows. Journal of Dairy Science, 74(7), 2220-2232.
  40. Kosaraju, S. L., Weerakkody, R. & Augustin, M. A. (2009). In-vitro evaluation of hydrocolloid-based encapsulated fish oil. Food Hydrocolloids, 23(5), 1413-1419.
  41. Lee, M. R. F., Tweed, J. K. S., Moloney, A. P. & Scollan, N. D. (2005). The effects of fish oil supplementation on rumen metabolism and the biohydrogenation of unsaturated fatty acids in beef steers given diets containing sunflower oil. Journal of Animal Science, 80(3), 361-367.
  42. Lourenco, M., Ramos-Morales, E. & Wallace, R. J. (2010). The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal, 4(7), 1008-1023.
  43. Maczulak, A. E., Dehority, B. A. & Palmquist, D. L. (1981). Effects of long-chain fatty acids on growth of rumen bacteria. Applied and Environmental Microbiology, 42(5), 856-862.
  44. Maia, M. R. G., Chaudhary, L. C., Bestwick, C. S., Richardson, A. J., McKain, N., Larson, T. R., Graham, I. A. & Wallace, R. J. (2010). Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens. BMC Microbiology, 10(1), 52-62.
  45. Maia, M. R. G., Chaudhary, L. C., Figueres, L. & Wallace, R. J. (2007). Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie van Leeuwenhoek, 91(4), 303-314.
  46. McDougall, E. I. (1948). Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochemistry Journal, 43(1), 99-109.
  47. NRC (2001). Nutrient Requirements of Dairy Cattle. (7th Ed.), National Academy Press, Washington, DC. USA.
  48. Ottenstein, D. M. & Batler, D. A. (1971). Improved gas chromatography separation of free acids C2-C5 in dilute solution. Analls of Chemistry, 43(7), 952-955.
  49. Palmquist, D. L. & Conrad, H. R. (1980). High fat rations for dairy cows. Tallow and hydrolyzed blended fat at two intakes. Journal of Dairy Science, 63(2), 391-395.
  50. Potu, R. B., AbuGhazaleh, A. A., Hastings, D., Jones, K. & Ibrahim, S. A. (2011). The effect of lipid supplements on ruminal bacteria in continuous culture fermenters varies with the fatty acid composition. Journal of Microbiology, 49(2), 216-223.
  51. Relling, A. E. & Reynolds, C. K. (2007). Feeding rumen-inert fats differing in their degree of saturation decreases intake and increases plasma concentrations of gut peptides in lactating dairy cows. Journal of Dairy Science, 90(3), 1506-1515.
  52. Reynolds, C. K., Aikman, P. C., Lupoli, B., Humphries, D. J. & Beever, D. E. (2003). Splanchnic metabolism of dairy cows during the transition from late gestation through early lactation. Journal of Dairy Science, 86(4), 1201-1217.
  53. Santos, J. E. P., Bilby, T. R., Thatcher, W. W., Staples, C. R. and Silvestre, F. T. (2008). Long chain fatty acids of diet as factors influencing reproduction in cattle. Reproduction in Domestic Animals, 43(Suppl 2), 23-30.
  54. SAS Institute Inc. (2002). Statistical Analysis System (SAS) User's Guide. SAS Institute. Cary. N.C. USA.
  55. Schauff, D. J., Elliott, J. P., Clark, J. H. and Drackley, J. K. (1992). Effects of feeding lactating dairy cows diets containing whole soybeans and tallow. Journal of Dairy Science, 75(7), 1923-1935.
  56. Scollan, N. D., Dhanoa, M. S., Choi, N. J., Maeng, W. J., Enser, M. & Wood, J. D. (2001). Biohydrogenation and digestion of long chain fatty acids in steers fed on different sources of lipid. Journal of Agricultural Science, Cambridge, 136(3), 345-355.
  57. Shingfield, K. J., Kairenius, P., Arölä, A., Paillard, D., Muetzel, S., Ahvenjärvi, S., Vanhatalo, A., Huhtanen, P., Toivonen, V., Griinari, J. M. & Wallace, R. J. (2012). Dietary fish oil supplements modify ruminal biohydrogenation, alter the flow of fatty acids at the omasum, and induce changes in the ruminal Butyrivibrio population in lactating cows. Journal of Nutrition, 142(8), 1437-1448.
  58. Sukhija, P. S. & Palmquist, D. L. (1990). Dissociation of calcium soaps of long-chain fatty acids in rumen fluid. Journal of Dairy Science, 73(7), 1784-1787.
  59. Tamminga, S. & Doreau, M. (1991). Lipids and rumen digestion. 151–160. In: Jouany J.P. (ed.): Rumen Microbial Metabolism and Ruminant Digestion. INRA, Paris.
  60. Toral, P. G., Shingfield, K. J., Hervás, G., Toivonen, V. & Frutos, P. (2010). Effect of fish oil and sunflower oil on rumen fermentation characteristics and fatty acid composition of digesta in ewes fed a high concentrate diet. Journal of Dairy Science, 93(10), 4804-4817.
  61. Van Keulen, J. V. & Young B. A. (1977). Evaluation of acid insoluble ash as a natural marker in ruminant digestibility studies. Journal of Animal Science, 44(2), 282-287.
  62. Van Nevel, C. J. & Demeyer, D. I. (1996). Effect of pH on biohydrogenation of polyunsaturated fatty acids and their Ca-salts by microorganisms in vitro. Archives of Animal Nutrition, 49(2), 151-158.
  63. Vlaeminck, B., Mengistu, G., Fievez, V., Jonge, L. D. & Dijkstra, J. (2008). Effect of in Vitro Docosahexaenoic Acid Supplementation to Marine Algae-Adapted and Unadapted Rumen Inoculum on the Biohydrogenation of Unsaturated Fatty Acids in Freeze-Dried Grass. Journal of Dairy Science, 91(8), 1122-1132.
  64. Wachira, A. M., Sinclair, L. A., Wilkinson, R. G., Hallett, K., Enser, M. & Wood, J. D. (2000). Rumen biohydrogenation of n-3 polyunsaturated fatty acids and their effects on microbial efficiency and nutrient digestibility in sheep. Journal of Agricultural Science, Cambridge, 135(4), 419-428.
  65. Whitelawa, F. G., Eadiea, J. M., Brucea, L. A. & Shand, W. J. (1984). Methane formation in faunated and ciliate-free cattle and its relationship with rumen volatile fatty acid proportions. British Journal of Nutrition, 52(2), 261-275.
  66. Wu, Z., Ohajuruka, O. A. & Palmquist, D. L. (1991). Ruminal synthesis, biohydrogenation, and digestibility of fatty-acids by dairy-cows. Journal of Dairy Science, 74(9), 3025‑3034.
  67. Yang, S. L., Bu, D. P., Wang, J. Q., Hu, Z. Y., Li, D., Wei, H. Y., Zhou, L. Y. and Loor, J. J. (2009). Soybean oil and linseed oil supplementation affect profiles of ruminal microorganisms in dairy cows. Animal, 3(11), 1562-1569.