تحلیل جهش‌های تک‌نوکلئوتیدی CXCR1 و تأثیر آن بر کیفیت شیر در نژادهای مختلف گاو شیری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

2 گروه علوم دامی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران.

چکیده

ژن کاندیدا CXCR1 یکی از ژن­های مرتبط با تولید شیر و مقاومت/حساسیت به بیماری ورم پستان در گاوهای شیری می­باشد. لذا هدف از پژوهش حاضر شناسایی چندشکلی در ناحیه ژن CXCR1 و ارتباط آنها با صفات کیفی شیر در گاوهای هلشتاین، سیستانی و آمیخته­های سیستانی×سیمنتال بود. نمونه‌های خون از سیاهرگ گردنی و شیر در طی یک دوره سه ماهه از 27 رأس گاو (سیستانی 10 رأس، هلشتاین 10 رأس و آمیخته­های سیستانی×سیمنتال 7 رأس) جمع‌آوری و ترکیبات شیر شامل درصد چربی، پروتئین، لاکتوز و ماده خشک بدون چربی اندازه‌گیری گردید. استخراج DNA به روش نمکی-بهینه­یافته انجام شد. قطعه 594 جفت بازی از ژن CXCR1 با یک جفت پرایمر اختصاصی تکثیر شد. توالی­یابی قطعه تکثیر شده به روش سانگر انجام گرفت. شناسایی جایگاه­های چندشکلی و محاسبه ساختارهای ژنتیکی جوامع از نرم­افزارهای MEGA11 و Dnasp5 استفاده شد و در نهایت ارتباط جایگاه­های چندشکلی با صفات کیفی شیر از مدل­ تابعیت چندگانه و رویه GLM نرم­افزار SAS9.4 استفاده گردید. نتایج نشان داد که تنوع ژنتیکی محدود در ژن CXCR1 بین نژادهای مختلف وجود دارد. نژاد هلشتاین بیشترین واگرایی ژنتیکی را داشت و آمیخته‌ها به نژاد سیستانی نزدیک‌تر بودند. ده جایگاه چندشکلی و پنج تغییر آمینواسیدی در این ژن شناسایی شد و نسبت dN/dS برابر با 63/1 نشان‌دهنده تأثیر انتخاب طبیعی در تکامل ناحیه ژن مذکور می­باشد. ارتباط معنی‌داری بین چندشکلی­ها در جایگاه SNP230 با درصد چربی، لاکتوز و ماده خشک بدون چربی شیر مشاهده شد. این یافته‌ها اهمیت ژن CXCR1 را در برنامه‌های اصلاح نژاد گاوهای شیری نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analysis of single-nucleotide polymorphism in the CXCR1 gene and its association with milk quality traits in different cattle breeds

نویسندگان [English]

  • Sina Askari 1
  • Mohammad Rokouei 1
  • Gholam Reza Dashab 1
  • mehdi vafae valleh 1
  • Ahmadreza Jahantigh 2
1 Department of Animal Science, Faculty of Agriculture, University of Zabol, Zabol, Iran
2 Department of Animal Science, Faculty of Agriculture, University of Zabol, Zabol, Iran
چکیده [English]

The CXCR1 gene is associated with milk production and mastitis resistance/sensitivity in dairy cows. This study aimed to identify polymorphisms in the CXCR1 gene and their association with milk quality traits in Holstein, Sistani, and Sistani×Simmental crossbred cows. Over three months, blood and milk samples were collected from 27 cows (10 Sistani, 10 Holstein, and 7 Sistani×Simmental). Milk components, including fat, protein, lactose, and solids-not-fat percentages, were measured. DNA was extracted using an optimized salting-out method, and a 594 bp fragment of the CXCR1 gene was amplified and sequenced via the Sanger method. Polymorphic regions were identified, and genetic structures were analyzed using MEGA11 and Dnasp5 software. Multiple linear regression and GLM procedures in SAS 9.4 were used to assess associations with milk quality traits. Results indicated limited genetic diversity in the CXCR1 gene among breeds, with Holsteins showing the highest divergence. Ten polymorphic sites and five amino acid changes were identified, with a dN/dS ratio of 1.63, suggesting natural selection's role in gene evolution. Notably, variants in the SNP230 region significantly correlated with fat, lactose, and solids-not-fat percentages in milk. These findings underscore the CXCR1 gene's potential in enhancing dairy cattle breeding programs.

کلیدواژه‌ها [English]

  • CXCR1
  • Dairy cattle
  • Mastitis resistance
  • Milk quality
  • Polymorphisms

Extended Abstract

Introduction

 The CXCR1 gene is one of the candidate genes affecting milk quality and resistance to mastitis in dairy cows. This gene has been mapped on chromosome 2 of cows (BTA2), and studies in different breeds have shown that some specific variants of this gene lead to increased resistance to mastitis. Therefore, the present study aims to identify different variants at the CXCR1 locus and their association with milk quality traits.

Materials and methods: In the present study, 27 purebred Sistani and Holstein cows (10 heads each breed) and Sistani×Simmental crossbred (7 heads) were randomly selected and blood was collected from the jugular vein. In addition, milk quality traits including fat, protein, lactose and solids non-fat percent were analyzed for three months. DNA extraction was performed using the optimized salting-out method. A pair of specific primers was used to amplify a 594 bp fragment of the CXCR1 gene. The amplification products were sequenced using the Sanger method. Genome editing was performed using the Chromas program and low-quality regions were removed, and a 518 bp fragment was used to examine polymorphism among different sequences. Identification of genetic variants, including deletions and additions (Indel) and single-nucleotide polymorphisms as well as genetic structures of populations such as the distance and divergence between and within populations and phylogenetic analysis were performed using MEGA11 and Dnasp5 software. Finally, the association between the variants and milk quality traits was examined using a multiple regression model using the GLM procedure of SAS 9.4 software.Results: In 10 regions of 518 base pairs in length, polymorphism was revealed in 25 different sequences belonging to Sistani, Holstein and Sistani×Simmental crossbred cows after editing the sequences. The 10 regions included 7 single-nucleotide polymorphic sites and three deletions and additions (Indel). The percentage of polymorphism among the total samples was 1.93%. Among the 172 amino acids resulting from the translation of the nucleotide sequence of the CXCR1 locus, five polymorphic regions were revealed, which were located at positions 3, 5, 77, 91 and 102 of the protein chains. Changes in the protein chain included the conversion of glycine to glutamate, threonine to glutamine, serine to leucine, alanine to valine, and serine to proline. In all populations, the percentage of transition substitution was higher than transversional substitution, which is probably due to the greater stability of transition substitutions. Kimura's neutral limit is equal to 0.5, and values ​​higher than 0.5 indicate the role of selection in evolution, and less than 0.5 indicate the absence of selection and the influence of other evolutionary factors such as migration and mutation. The Kimura index coefficient in all breeds was more than 0.5, indicating the role of selection in the evolution of breeds and genetic changes in the mentioned area. The highest divergence rate was in the Holstein population (0.01 bp). Among the divergence rates of different breeds, the highest divergence rate was observed between crosses and Holsteins (0.00354 bp), and the lowest between Sistani and crossbred (0.0014 bp). The coefficient of evolutionary differentiation among breeds was 0.099 bp, with a standard error of 0.056 bp, indicating a very low coefficient of differentiation in the studied area. The number of deletions and additions (Indel) was 3 positions with a length of one base pair. The ratio of mutations that led to amino acid changes (dS) to changes that did not cause amino acid changes (dN) is an index that indicates the role of natural selection in the evolution of populations. In the present study, a pairwise comparison of the sequences from different samples of Sistani, Holstein, and crossbred cows was performed, yielding a value of 1.63, which indicates the involvement of natural selection during the evolution of different cattle breeds. The results of the study of the association of genetic variants in the CXCR1 gene region with milk quality traits showed that polymorphism in the 230 gene region (SNP230) had a significant association with the traits of fat, lactose and solids non-fat percentage. At the SNP230 locus, the allele with higher frequency in the population had a higher effect than the allele with lower frequency in all quality traits of milk.

Conclusions: Genetic variation was observed at the CXCR1 gene locus, but it was limited. Most regions of the gene were conserved across breeds. Association analysis between gene variants and milk quality traits showed significant associations, so it could be a useful marker in dairy cattle breeding programs.

 

Author Contributions

Methodology, S. A., G. R. D. and M. R.; software, S. A., G. R. D. and M. R.; formal analysis, S. A., G. R. D. and M. R. writing—original draft preparation, S. A., G. R. D., M. R., M. V., and A. J.; writing—review and editing, S. A., G. R. D., M. R., M. V., and A. J.; supervision, G. R. D., M. R., All authors have read and agreed to the published version of the manuscript.

 Data Availability Statement

Data available on request from the authors.

Acknowledgements

The authors would like to thank all participants of the present study.

 Ethical consideration

The study was approved by the Ethics Committee of the University of Zabol (Ethical cod: IR-UOZ-4398). The authors avoided data fabrication, falsification, plagiarism, and misconduct.

 Conflict of interest

The author declares no conflict of interest.

منابع

مقصودی، ع.، نجاتی جوارمی، ا.، حسنی بافرانی، ع.، نوری صادق، ح.، جهان، م.، سروری کلوتی، ح. و خانی بندانی، ح. 1401. بررسی عوامل مؤثر بر کاهش جمعیت گاو نژاد سیستانی و راهکارهای احیای آن. نشریه علوم دامی، 135، 39-54.
 
REFERENCES
Ablondi M., Summer A., Stocco G., Degano L., Vicario D., Stefanon B., Sabbioni A. and Cipolat-Gotet C. (2023). Heritability and genetic correlations of total and differential somatic cell count with milk yield and composition traits in Italian Simmental cows. Journal of Dairy Science, 106(12), 9071-9077.
Asadpour, R., Feyzi, L., Jafari-Joozani, R., Hamali, H., Abolfaz, H., Hajibemani H. and Firouzamandi, M. (2020). The relationship between polymorphism of the CXCR1 gene and the risk of endometritis in Holstein dairy cows. Veterinarski Arshiv, 90(6), 557-563.
Beecher C., Daly M., Ross R. P., Flynn J., McCarthy T. V. and Giblin L. (2012). Characterization of the bovine innate im mune response in milk somatic cells following intramammary infection with Streptococcus dysgalactiae subspecies dysga lactiae. J. Dairy Sci., 95, 5720-5729.
Berglund B. (2008). Genetic improvement of dairy cow reproductive performance. Reproduction in Domestic Animals, 43, 89-95.
Brown, A. J., Joseph, P. R., Sawant, K. V. and Rajarathnam, K. (2017). Chemokine CXCL7 heterodimers: structural insights, CXCR2 receptor function, and glycosaminoglycan interactions. Int. J. Mol. Sci., 18(4), 748. doi:10.3390/ijms18040748.
Chen, L., Fan, J., Chen, H., Meng, Z., Chen, Z., Wang, P. and et al. (2014). The IL-8/CXCR1 axis is associated with cancer stem cell-like properties and correlates with clinical prognosis in human pancreatic cancer cases. Sci Rep., 4, 5911. doi: 10.1038/srep05911.
Galvão, K. N., Pighetti, G. M., Cheong, S. H. and et al. (2011). Association between interleukin-8 receptor-α (CXCR1) polymorphism and disease incidence, production, reproduction, and survival in Holstein cows. J. Dairy Sci., 94, 2083-2091.
Goertz, I., Baes, C., Weimann, C., Reinsch, N. and et al. (2009). Association between single-nucleotide polymorphisms in the CXCR1 gene and somatic cell score in Holstein dairy cattle. J. Dairy Sci., 92, 4018-4022.http://dx.doi.org/10.3168/ jds.2008-1536.
Grosse, W. M., Kappes, S. M., Laegreid, W. W. and Keele, J. W. (1999). Single-nucleotide polymorphism (SNP) discovery and linkage mapping of bovine cytokine genes. Mammalian Genome, 10, 1062-1069.
 Hosseini Moghaddam, S. H., Ayatollahi1, M., Ahadzadeh, O., Mirhoseini, S. Z., Khataminejad, R. and Alaei, H. (2021). Genotyping of Lactoferrin and CXCR1 genes in Guilan native cows and its association with milk somatic cell score. Irani an Journal of Applied Animal Science, 11(1), 87-93.
Kim, H. Y., Choi, J. H., Kang, Y. J., Park, S. Y., Choi, H. C. & Kim, H. S. (2011). Reparixin, an inhibitor of CXCR1 and CXCR2 receptor activation, attenuates blood pressure and hypertension-related mediators expression in spontaneously hypertensive rats. Biological & Pharmaceutical Bulletin, 34(1), 120–127. https://doi.org/10.1248/bpb.34.120
Kosciuczuk, E. M., Lisowski, P., Jarczak, J., Krzyzewski, J., Zwierzchowski, I. and Bagnicka, E. (2014). Expression patterns of β-defensin and cathelicidin genes in parenchyma of bovine mammary gland infected with coagulase-positive or coagulase-negative Staphylococci. BMC. Vet. Res., 10, 1. DOI: 10.1186/s12917-014-0246-z.
Lee, D. W. and et al. (2015). T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet, 385, 517–528.
Leyva-Baca, I., Schenkel, F., Martin, J. and Karrow, N. A. (2008). Polymorphisms in the 5’ upstream region of the CXCR1 chemokine receptor gene, and their association with somatic cell score in Holstein cattle in Canada. J. Dairy Sci., 91, 407-417.
Librado, P. and Rozas, J. (2009). DnaSP v5: software for comprehensive analysis of DNA polymorphism data. Journal of Bioinformatics, 25, 1451-1452. doi.org/10.1093/bioinformatics/btp187.
Lopez, A. and Bonasora, M. G. (2017). Phylogeography, genetic diversity and population structure in a Patagonian endemic plant. AoB Plants, 16(4), 275-285.
Maghsoudi, A., Nejati-Javaremi, A., Hasani Baferani, A., Noure Sadegh, H., Jahan, M., Sarvari-Kalouti, H. and Khani-Bandani, H. (2021). Evaluation of the effective factors on reducing the population of Sistani cattle and the revitalization strategies. Animal Science Journal (Pajouhesh & Sazandegi), 135, 39-54. (In Persian)
MagotraP. A., BangarY. C., Patil, C. S., KamaldeepP., SindhuV., MalikD., ChaudharyP., GargA. R. and Kumar, S. (2023). Association of CXCR1 gene polymorphism with clinical mastitis, reproductive disorders and performance traits in Hardhenu (Bos taurus × Bos indicus) cattle. Reproduction in Domestic Animals, 58(9), 1234-1243.
Martinez, L., Lucas, P., Navarro, G., Checa, A. I., Franco, R., Martínez-A, C., Rodríguez-Frade, J. M. & Mellado, M. (2009). Dynamic regulation of CXCR1 and CXCR2 homo- and heterodimers. Journal of Immunology, 183(11), 7337–7346. https://doi.org/10.4049/jimmunol.0901802.
Mitchell, G. B., Albright, B. N. and Caswell, J. L.  (2003). Effect of interleukin-8 and granulocyte colony-stimulating factor on priming and activation of bovine neutrophils. Infect. Immun., 71, 1643-1649. DOI: 10.1128/iai.71.4.1643-1649.2003.
Muller, J. K. and Leweke, F. M. (2016). Bipolar disorder: clinical overview. Medizinische Monatsschrift fur Pharmazeuten, 39(9), pp.363-9.
Nilsen, H., Olsen, H. G., Hayes, B., Nome, T. and et al. (2009). Characterization of a QTL region affecting clinical mastitis and protein yield on BTA6. Anim. Genet., 40, 701-712. http://dx.doi.org/10.1111/j.1365-2052.2009.01908.x.
Ogorevc, J., Prpar, S. and Dovc, P. (2000). Establishment and characterization of a caprine mammary epithelial cell line. In vitro Cell Development Biology Science, 36(1), 26-37. doi: 10.1290/1071-2690(2000)036<0026:EACOAC>2.0.CO;2.
Paape, M. J., Shafer-Weaver, K., Capuco, A. V., Van Oostveldt, K. and et al. (2000). Immune surveillance of mammary tissue by phagocytic cells. Adv. Exp. Med. Biol., 480, 259-277. http://dx.doi.org/10.1007/0-306-46832-8_31.
Petersen, G. and Seberg, O. (2003). Phylogenetic analyses of the diploid species of Hordeum (Poaceae) and a revised classification of the genus. Systematic Botany, 28, 293-306. DOI:10.1043/0363-6445-28.2.293.
Pighetti, G. M. and Rambeaud, M. (2006). Genome conservation between the bovine and human interleukin-8 receptor complex: improper annotation of bovine interleukin-8 receptor b identified. Vet. Immunol. Immunopathol., 114, 335–340.
Pighetti, G. M., Kojima, C. J., Wojakiewicz, L. and Rambeaud, M. (2012): The bovine CXCR1 gene is highly polymorphic. Vet. Immunol. Immunopathol., 145, 464-470.
Pokorska, J., Dusza, M., Kułaj1, D., Żukowski, K. and Makulska, J. (2015). Single-nucleotide polymorphisms in the CXCR1 gene and its association with clinical mastitis incidence in Polish Holstein-Friesian cows. Genetics and Molecular Research, 15(2), gmr.15027247.
Rekik, B., Ajili, N., Hani, H. B., BenGara, A. and Rouissi, H. (2008). Effect of somatic cell count on milk and protein yields and female fertility in Tunisian Holsteins cows. Livest. Sci., 106, 309-317.
SAS Institute. (2004). SAS®/STAT Software, Release 9.4. SAS Institute, Inc., Cary, NC. USA.
Shankarappa, B., Nagaraja, R., Yathish, H. M. and Prasanna, S. B. (2021). Identification of CXCR1 gene variants and their association with somatic cell count in HF crossbred and Deoni cattle. The Pharma Innovation Journal, SP-10(11), 2098-2102.
Tamura, K. and Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10, 512-526. DOI: 10.1093/oxfordjournals.molbev.a040023.
Tamura, K., Stecher, G. and Kumar, S. (2021). MEGA 11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, https://doi.org/10.1093/molbev/msab120.
Verbeke, J., Piepers, S., Peelman, L., Van Poucke, M. and De Vliegher, S. (2012). Pathogen-group specific association between CXCR1 polymorphisms and subclinical mastitis in dairy heifers. Journal of Dairy Research, 79(3), 341–51.
Youngerman, S. M., Saxton, A. M. and Pighetti, G. M. (2004a). Novel single-nucleotide polymorphisms and haplotypes within the bovine CXCR2 gene. Immunogenetics, 56, 355–359.
Youngerman, S. M., Saxton, A. M., Oliver, S. P. and Pighetti, G. M. (2004b). Association of CXCR2 polymorphisms with sub clinical and clinical mastitis in dairy cattle. J. Dairy Sci. 87: 2442–2448.
Zhang, C., Fan, X., Yu, H. Q., Zhang, H. Q., Wang, X. L. and Zhou, Y. H. (2009). Phylogenetic analysis of questionable tetraploid species in Roegneria and Pseudoroegneria (Poaceae: Triticeae) inferred from a gene encoding plastid acety1-CoA carboxylase. Biochemical Systematics and Ecology, 37, 412-420. https://doi.org/10.1016/j.bse.2009.04.011.
Zhang, C., Wang, Y., Chen, H., Fang, X. and Gu, C. (2012). The chemokine receptor 1 gene polymorphism and its association with somatic cell score and milk production traits in dairy cattle. Animal Science Papers and Reports, 30(1), 25–33.
Zhou, L., Wang, H. M., Ju, Z. H. and et al. (2013). Association of novel single nucleotide polymorphisms of the CXCR1 gene with the milk performance traits of Chinese native cattle. Genet. Mol. Res., 12, 2725-2739.