پیش‌بینی منحنی رشد جوجه‌های سالم و مبتلا به آسیت آرین با استفاده از مدل‌های غیرخطی مختلط

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه تبریز، اتبریز، ایران

2 . گروه علوم دامی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

3 گروه علوم دامی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

چکیده

هدف از این تحقیق شناسایی بهترین مدل غیرخطی مختلط برای برازش منحنی رشد جوجه‌های سالم و مبتلا به آسیت بود. بدین منظور از رکوردهای وزن بدن 823 جوجه از خط پدری B سویه تجاری آرین، از زمان تولد تا 45 روزگی استفاده شد. این جوجه‌ها (شامل 381 نر و 442 ماده) در ایستگاه تحقیقاتی دانشگاه تبریز پرورش یافته و شرایط تغذیه و پرورش آن‌ها مطابق با دستورالعمل‌های مجتمع پرورش و اصلاح نژاد مرغ لاین آرین بابلکنار بوده است. نتایج حاصل از برآورد پارامتر با اثر تصادفی کلی برای 8 مدل غیرخطی مختلط نشان داد که مدل‌ میتچرلیچ برای نرهای سالم و مبتلا به آسیت با شاخص AIC برابر 33945 ، 50/7012 و مدل لوگ­لجیستیک برای ماده سالم و مبتلا به آسیت با شاخص AIC برابر 41061 ، 30/1468 به عنوان بهترین مدل انتخاب شدند. در ادامه ازآنجایی که هر دو مدل دارای سه پارامتر بودند به ترتیب  برای هر کدام از پارامترها (B, A  و K) اثرتصادفی در نظر گرفته شده و مدلها مورد بررسی قرار گرفتند. کمترین مقدار معیار برازش AIC و BIC برای مدل لوگ­لجستیک با دو پارامتر تصادفی (B, K) به ترتیب برابر با 54038، 53985 و بعد آن با سه پارامتر تصادفی (B, A و K) با مقادیر 54006، 54069 بودند. به طور کلی نتیجه­گیری می شود که مدل میتچرلیچ برای جوجه‌های نر و مدل لوگ لجیستیک برای جوجه‌های ماده، بهترین برازش را برای منحنی رشد در شرایط سالم و مبتلا به آسیت دارند و می‌توانند در ارزیابی‌های ژنتیکی دقیق‌تر استفاده شوند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Predicting The Growth Curve of Healthy And Ascites Arian Broiler Chickens Using Nonlinear Models

نویسندگان [English]

  • vahid janizadeh 1
  • sadegh alijani 2
  • Seyed Abbas Rafat 3
  • Hasan Hasanpour 3
1 Department of Animal Sciences, Faculty of Agriculture, Tabriz University, Tabriz, Iran
2 Department of Animal Sciences, Faculty of Agriculture, University if Tabriz,, Tabriz,, Iran
3 Department of Animal Sciences, Faculty of Agriculture, Tabriz University, Tabriz, Iran
چکیده [English]

This research aimed to identify the best nonlinear mixed model to fit the growth curve of healthy and ascites-affected broiler chickens. Body weight records of 823 chickens from the paternal line B of the commercial Arian strain were used, from birth to 45 days. These chickens (381 males, 442 females) were raised at the University of Tabriz research station, with feeding and rearing conditions following guidelines from the Arian Broiler Line Breeding and Improvement Complex in Babolkanar. Results from parameter estimation with a global random effect for eight nonlinear mixed models indicated that the Mitscherlich model was selected as the best for healthy and ascites-affected males (AIC = 33945, 7012.50), and the log-logistic model was best for healthy and ascites-affected females (AIC = 41061, 1468.30). These two models, each with three parameters (B, A, and K), were examined with random effects considered for each parameter. The lowest AIC and BIC values for the log-logistic model were observed with two random parameters (B, K) at 53985 and 54038, respectively, followed by three random parameters (B, A, and K) at 54069 and 54006, respectively. Overall, the findings suggest that the Mitscherlich model for male chicks (healthy and ascetic) and the log-logistic model for female chicks provide the best fit for growth curves under both healthy and ascetic conditions. These models can be valuable in more precise genetic evaluations.

کلیدواژه‌ها [English]

  • Ascites
  • growth curve
  • healthy chicken
  • log-logistic model

Extended Abstract

Introduction

Background

The poultry industry is economically vital, driven by increasing socioeconomic demand for animal protein. Given the limitations on expanding livestock and poultry numbers in the country, utilizing animals with high production efficiency is crucial. Diseases can significantly impact a nation’s poultry industry. Contemporary poultry breeding should focus on enhancing genetic resistance to diseases, thereby reducing antimicrobial reliance. Current selection practices for commercial lines with accelerated growth, increased production, and lower feed conversion ratios have inadvertently led to reduced genetic diversity, physiological disorders, and compromised immune system function. This erosion of genetic diversity creates populations vulnerable to emerging diseases, posing a substantial risk to the poultry industry. Ascites, or pulmonary hypertension syndrome, is a metabolic disorder observed in broiler chickens resulting from right ventricular failure accompanied by fluid accumulation in the abdominal cavity. Growth models are valuable management tools for understanding the influence of intrinsic and environmental factors on growth-related traits. This study aimed to evaluate various models for fitting growth curves in healthy and ascites chickens, identifying the best-fitting model using classical statistical methods.

 

Methods

 To investigate the growth curves of broiler chickens at the line level, body weight records of 823 chicks from the paternal B-line of the commercial Arian strain were used. A total of 381 male and 442 female chicks were raised on litter, with feeding and rearing conditions conforming to the guidelines of the Line Breeding and Improvement Complex in Babolkanar. The study was conducted at the Research Station of the University of Tabriz. A lighting program of 23 hours of light and 1 hour of darkness was employed throughout the rearing period. Birds had ad libitum access to water and feed. The paternal B-line has undergone continuous selection for increased body weight over multiple generations. Chicks were fed starter feed from days 0-15, grower feed from days 15-30, and finisher feed from days 30-45, and were vaccinated according to standard protocols. Body weight records were collected at hatch, weekly from weeks 1 to 6, and at 45 days of age. Following the removal of outlier data from weekly weight measurements, conventional methods were employed to fit various nonlinear mixed models to investigate growth curves in ascetic and healthy chickens.

 

Results

 The results of parameter estimation with a general random effect for 8 nonlinear mixed models showed that the Mitscherlich model for healthy and ascetic males with an AIC index of 33945 and 7012.50, respectively, and the log-logistic model for healthy and ascetic females with an AIC index of 41061 and 1468.30, respectively, were selected as the best models. These two models, having three parameters (B, A, and K), each considered with a random effect, were examined. The lowest values of the AIC and BIC fit criteria for the log-logistic model with two random parameters (B, K) were 53985 and 54038, respectively, followed by the three random parameter model (B, A, and K) with values of 54069 and 54006, respectively.

 

Conclusion

     In conclusion, the nonlinear Logistic and Mitscherlich models with a general random effect provided the best fit to the body weight data for describing the growth of healthy and ascetic male and female chicks. Furthermore, significant differences in the growth patterns between these two groups were observed, and these differences were well-described by the nonlinear mixed-effects models.

 

Data Availability Statement

This article contains all the data that were created or evaluated during the research.

Acknowledgements

The authors would like to sincerely thank the members of the Faculty of Animal Sciences, University of Tehran Research Council for the approval and support of this research.

Conflict of interest

The author declares no conflict of interest.

 

منابع

برارپور.م.، قلی‌زاده.م.، حافظیان.ح.، فرهادی.ا.1399. مقایسه برخی مدل‌های آماری غیر خطی در توصیف منحنی رشد مرغان بومی مازندران.12 (33):ص132-138.
 
REFERENCES
Aggrey, S.E. (2009). Logistic nonlinear mixed effects model for estimating growth parameters. Poultry Science, 88(2), 276-280.
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. doi: 10.1109/TAC.1974.1100705
Aliabad, A. J., Seyedabadi, H., & Dezfuli, B. T. (2011). Association of insulin-like growth Factor-I gene with body composition traits in Iranian commercial broiler lines 71-76. 14:
Baghban Zadeh, A., & Decuypere, E. (2008). Ascites syndrome in broilers: physiological and nutritional perspectives. Avian Pathology, 37(2), 117-126. doi: 10.1080/03079450801902062
Balog, J. M., Anthony, N. B., Cooper, M. A., Kidd, B. D., Huff, G. R., Huff, W. E., & Rath, N. C. (2000). Ascites syndrome and related pathologies in feed restricted broilers raised in a hypobaric chamber. Poultry Science, 79(3), 318-323. doi: 10.1093/ps/79.3.318
Beiki, H., Pakdel, A., Moradi-shahrbabak, M., & Mehrban, H. (2013). Evaluation of growth functions on Japanese quail lines. Journal of Poultry Science, 50(1), 20–27. doi: 10.2141/jpsa.0110142
Chapman, M. E., & Wideman Jr, R. F. (2001). Pulmonary wedge pressures confirm pulmonary hypertension in broilers is initiated by an excessive pulmonary arterial (precapillary) resistance. Poultry Science, 80(4), 468-473. doi: 10.1093/ps/80.4.468
Druyan, S., Shinder, D., Shlosberg, A., Cahaner, A., & Yahav, S. (2009). Physiological parameters in broiler lines divergently selected for the incidence of ascites. Poultry Science, 88(9), 1984–1990. doi: 10.3382/ps.2009-00116
Dudouet, E. (1982). Theoretical lactation curve of the goat and its applications 53-61.
Fitzhugh, H. A. (1976). Analysis of growth curves and strategies for altering their shape. Journal of Animal Science, 42(5), 1036–1051. doi: 10.2527/jas1976.4241036x
Galeano-Vasco, L. F., Cerón-Muñoz, M. F., & Narváez-Solarte, W. (2014). Ability of non-linear mixed models to predict growth in laying hens. Revista Brasileira de Zootecnia, 43(11), 573-578. doi: 10.1590/S1516-35982014001100003
Gibson, J. P., & Bishop, S. C. (2005). Use of molecular markers to enhance resistance of livestock to disease: a global approach. Office International des Épizooties, Scientific and Technical Review, 24(1), 343–353.
Hall, D. B., & Clutter, M. (2004). Multivariate multilevel nonlinear mixed effects models for timber yield predictions. Biometrics, 60, 16–24.
Hassanzadeh, M., Buyse, J., Toloei, T., & Decuypere, E. (2013). Ascites syndrome in broiler chickens: A review on the aspect of endogenous and exogenous factors interactions. The Journal of Poultry Science, 0130063. doi:10.2141/jpsa.0130063
Hoffmann, I. (2009). The global plan of action for animal genetic resources and the conservation of poultry genetic resources. World’s Poultry Science Journal, 65(2), 286-297.
Hosseinpour Mashhadi, M., Elahi Torshizi, M., & Ehtesham Gharaee, Sh. (2017). Description of growth curve in male and female lambs of baluchi breed by application of nonlinear growth models. Research on Animal Production, 15, 155-160. (In Persian).
Ibiapina Neto, V., Barbosa, F. J. V., Campelo, J. E. G., & Sarmento, J. L. R. (2020). Non-linear mixed models in the study of growth of naturalized chickens. Revista Brasileira de Zootecnia, 49, e20190194. doi:10.37496/rbz4920190201
Iqbal, F., Tariq, M. M., Eyduran, E., Waheed, A., Abbas, F., Ali, M., & Mustafa, Z. (2019). Fitting Nonlinear Growth Models on Weight in Mengali Sheep through Bayesian Inference. Pakistan Journal of Zoology, 51(2), 459-467.doi: 10.17582/journal.pjz/2019.51.2.459.466
Julian, R. J. (2000). Physiological management and environmental triggers of the ascites syndrome: a review. Avian Pathology, 29(6), 519–527. doi:10.1080/03079450020016751
Júnior, R.N.C.C., de Araújo, C.V., de Menezes, F.L., de Araújo, S.I., Pavan, N.L., Rocha-Silva, M., Silva, W.C.D., Felipe Marques, J.R., Maciel e Silva, A.G., de Menezes Chalkidis, H. and Júnior, J.D.B.L. (2023). Growth curve mixed nonlinear models in quails. PLoS One, 18(6), e0287056.
Karaman, E., Narinc, D., Firat, M. Z., & Aksoy, T. (2013). Nonlinear mixed effects modeling of growth in Japanese quail. Poultry Science, 92(7), 1942-1948. doi: 10.3382/ps.2012-02896
Keskin, I., Dag, B., Sariyel, V., & Gokmen, M. (2009). Estimation of growth curve parameters in Konya Merino sheep. South African Journal of Animal Science, 39(3), 163-169. doi:10.4314/sajas. v39i2.44390
Kucuk, M., & Eyduran, E. (2009). The determination of the best growth model for Akkaraman and German Blackheaded Mutton X Akkaraman B. Bulgarian Journal of Agricultural Science, 15(1), 90-92.
Lahav, T., Atzmon, G., Blum, S., Ben-Ari, G., Weigend, S., Cahaner, A., Lavi, U., & Hillel, J. (2006). Marker-assisted selection based on a multi-trait economic index in chicken: experimental results and simulation. Animal Genetics, 37(5), 482–488. doi: 10.1111/j.1365-2052.2006. 01512.x
Lawrence, T. L. J., Fowler, V. R., & Novakofski, J. E. (2012). Growth and puberty in breeding animals. In Growth of farm animals (pp. 270-289). CABI. doi:10.1079/9781780641461.0270
Loibel, S., Andrade, M. G., do Val, J. B., & Freitas, A. R. D. (2010). Richards growth model and viability indicators for populations subject to interventions. Anais da Academia Brasileira de Ciências, 82, 1107-1126. doi:10.1590/S0001-37652010000400028
Mandal, A., Roy, R., & Rout, P. K. (2008). Direct and maternal effects for body measurements at birth and weaning in Muzaffarnagari sheep of India. Small Ruminant Research, 75(2-3), 123-127. doi: 10.1016/j.smallrumres.2007.08.004
Mata-Estrada, A., González-Cerón, F., Pro-Martínez, A., Torres-Hernández, G., Bautista-Ortega, J., Becerril-Pérez, C. M., & Sosa-Montes, E. (2020). Comparison of four nonlinear growth models in Creole chickens of Mexico. Poultry Science, 99(4), 1995-2000. doi: 10.1016/j.psj.2019.11.031
Mouffok, C., Semara, L., Ghoualmi, N., & Belkasmi, F. (2019). Comparison of Some Nonlinear Functions for Describing Broiler Growth Curves of Cobb500 Strain. Poultry Science Journal, 7(1), 51-61. doi:10.22069/psj.2019.15965.1386
Nematzadeh, R., Alijani, S., Hasanpur, K., Olyayee, M., & Shodja, J. (2022). Comparison of different mathematical functions for fitting growth curves of ascitic and healthy broiler chickens. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 69(3), 289-295. doi: 10.33988/auvfd.842816
Norris, D., Ngambi, J. W., Benyi, K., Makgahlela, M. L., Shimelis, H. A., & Nesamvuni, E. A. (2007). Analysis of growth curves of indigenous male Venda and Naked Neck chickens. South African Journal of Animal Science, 37(1), 21-26. doi:10.4314/sajas. v37i1.4021
Olkowski, A. A., Nain, S., Wajnarowicz, C., Laarveld, B., Alcorn, J., & Ling, B. B. (2007). Comparative study of myocardial high energy phosphate substrate content in slow and fast-growing chicken and in chickens with heart failure and ascites. Comparative Biochemistry and Physiology, Part A: Molecular & Integrative Physiology, 148(1), 230–238. doi: 10.1016/j.cbpa.2007.04.015
Parveen, A., Jackson, C. D., Dey, S., Tarrant, K., Anthony, N., & Rhoads, D. D. (2020). Identification and validation of quantitative trait loci for ascites syndrome in broiler chickens using whole genome resequencing. BMC Genetics, 21(1), 1-10. doi: 10.1186/s12863-020-00859-x
SAS Institute Inc. 2016. SAS/SHARE® 9.4: User’s Guide, Second Edition. Cary, NC: SAS Institute Inc.
Schwartz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.
Seifi Moroudi, R., Ansari Mahyari, S., Vaez Torshizi, R. and Ahmadi, H., 2020. Description of Growth Patterns in a Crossbred Population of Native× Commercial Broiler Chicken. Journal of Agricultural Science and Technology22(6), pp.1449-1462.
Selvaggi, M., Laudadio, V., Dario, C., & Tufarelli, V. (2015). Modelling growth curves in a nondescript Italian chicken breed: an opportunity to improve genetic and feeding strategies. The Journal of Poultry Science, 0150048. doi: 10.2141/jpsa.0150048
Waheed, A., Khan, M. S., Safdar, A., & Sarwar, M. (2011). Estimation of growth curve parameters in Beetal goats. Archiv Tierzucht, 54(3), 287-296. doi: 10.5194/aab-54-287-2011
Wideman, R. F., Rhoads, D. D., Erf, G. F., & Anthony, N. B. (2013). Pulmonary arterial hypertension (ascites syndrome) in broilers: a review. Poultry Science, 92(1), 64-83. doi: 10.3382/ps.2012-02745
Lubritz, D. L., Smith, J. L., & McPherson, B. N. (1995). Heritability of ascites and the ratio of right to total ventricle weight in broiler breeder male lines. Poultry Science, 74(6), 1237–1241