اثر کاهش پروتئین غیرقابل تجزیه در شکمبه و مکمل لیزین و متیونین محافظت شده در شکمبه بر مصرف ماده خشک، تولید و ترکیب شیر و قابلیت هضم مواد مغذی در گاوهای شیرده در اوایل دوره شیردهی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران

2 موسسه تحقیقات علوم دامی کشور، سازمان تحقیقات آموزش و ترویج کشاورزی، کرج، ایران

چکیده

هدف این مطالعه بررسی اثر کاهش سطح پروتئین غیرقابل تجزیه در شکمبه و مکمل اسیدهای آمینه لیزین و متیونین محافظت شده در شکمبه جیره بر مصرف ماده خشک، تولید و ترکیب شیر و قابلیت هضم ظاهری مواد مغذی در کل دستگاه گوارش در گاوهای شیرده در اوایل دوره شیردهی بود. جیره‌های آزمایشی شامل 1- جیره حاوی 32/17 درصد پروتئین خام بدون مکمل لیزین و متیونین محافظت شده در شکمبه، 2- جیره حاوی 08/16 درصد پروتئین خام و 045/ درصد متیونین محافظت شده در شکمبه، 3- جیره حاوی 18/15 درصد پروتئین خام و 075/0 درصد متیونین محافظت شده در شکمبه و 4- جیره حاوی 2/14 درصد پروتئین خام، 105/0 درصد متیونین و 037/0 درصد لیزین محافظت شده در شکمبه بودند. نتایج نشان دادند که کمترین مصرف ماده خشک در گاوهای تغذیه شده با جیره حاوی 2/14 درصد پروتئین خام، 105/0 درصد متیونین و 037/0 درصد لیزین محافظت شده در شکمبه و جیره حاوی 18/15 درصد پروتئین خام و 075/0 درصد متیونین محافظت شده در شکمبه مشاهده شد (05/0>P). تولید شیر خام، شیر تصحیح شده برای 4 درصد چربی، شیر تصحیح شده برای انرژی، تولید ترکیبات شیر، درصد پروتئین، لاکتوز و کل مواد جامد بدون چربی شیر و قابلیت هضم ماده خشک و ماده آلی در کل دستگاه گوارش تحت تاثیر جیره‌های آزمایشی قرار نگرفت (05/0<P). در کل، گاوهای تغذیه شده با جیره حاوی 18/15 درصد پروتئین خام و 075/0 درصد متیونین محافظت شده در شکمبه در مقایسه با سایر گروه‌ها عملکرد بهتری داشتند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect Of Reducing Rumen Undegradable Protein And Protected Lysine And Methionine Supplementation on Dry Matter Intake, Milk Yield And Composition And Nutrient Digestibility of Holstein Cows in Early Lactation

نویسندگان [English]

  • Maryam Nowrozi 1
  • farshid fatahnia 1
  • Mehdi Bahrami Yekdangi 2
  • mohammad shamsollahi 1
  • Maryam Athani Ashari 2
1 Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
2 Animal Sciences Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO). Karaj. Iran
چکیده [English]

The aim of this study was to investigate the effect of reducing level of rumen undegradable protein (RUP) and rumen-protected lysine and methionine supplementation on dry matter intake (DMI), milk yield and composition and total tract nutrients digestibility of dairy cows in early lactation. Twelve multiparous (parity = 2; average milk yield = 48 ± 1; days in milk = 80 ± 2) Holstein dairy cows were used in replicated 4×4 Latin square design (4 treatments in 4 periods). Each period lasted 21 d with 14 d of experimental diets adaptation and 7 d of data recording and sample collection. The experimental diets included 1- diet containing 17.32% crude protein (CP) without rumen-protected lysine (RPL)and methionine (RPM) supplementation (CP17.32-NoRPL-NoRPM), 2- diet containing 16.08% CP and 0.045% RPM (CP16.08-RPM0.045%), 3- diet containing 15.18% CP and 0.075% RPM (CP15.18-RPM0.075%), and 4- diet containing 14.2% CP, 0.105% RPM, and 0.037% RPL (CP14.2-RPM0.105%-RPL0.037%). Results showed that the lowest DMI was observed in cows fed CP14.2-RPM0.105%-RPL0.037% and CP15.18-RPM0.075% diets compared to others (P<0.05). Milk yield, 4% fat corrected milk, energy corrected milk and milk component production were not affected by the experimental diets (P<0.05). Experimental diets did not affect total tract apparent digestibility of dry matter (DM) and organic matter (OM) (P<0.05). The highest total tract apparent digestibility of CP were observed in cows fed CP17.32-NoRPL-NoRPM (P<0.05). Overall, feeding CP15.18-RPM0.075% diet improved productive performance of Holstein dairy cows in early lactation.

کلیدواژه‌ها [English]

  • Crude protein
  • Protected lysine
  • Protected methionine
  • Holstein cattle
  • Performance

Extended Abstract

Introduction

Protein is one of the major challenges in the livestock industry, especially the dairy cattle industry. Less than 25% of crude protein (CP) consumed is retained in the body of dairy cows and the rest is excreted into the environment in various forms. The reason for this is the high requirement of high-producing dairy cows for protein sources, which are mainly supplied from plant sources. The amino acid (AA) profile of plant protein sources is not in line with the needs of dairy cows, so the efficiency of protein is low. In addition to reducing efficiency, this increases production costs and environmental pollution, and ultimately wastes the country's resources. If protein in the diet is properly balanced, utilization efficiency of dietary protein for milk synthesis reaches 30 to 33% and higher. That is, 30 to 33% of CP consumed is converted into milk protein. However, if the protein balance of the diet is not maintained, this efficiency decreases to 23%. Therefore, reducing nitrogen (N) losses and improving utilization efficiency of N in dairy cows is essential for biological, economic and environmental reasons. One strategy to increase N efficiency is to feed dairy cows diets with low CP content. However, this strategy is usually associated with lower productivity (milk production, milk protein production or both) and is economically undesirable. Therefore, adding essential AAs to low CP diets may be an effective way to maintain milk production and reduce environmental N excretion in dairy cows. Lysine and methionine are two limiting AAs for dairy cows. Adding rumen-protected lysine and methionine to low-protein diets is considered as an efficient method to meet AA requirements. Therefore, the aim of the present study was to investigate the effect of diets containing different levels of CP and rumen-protected methionine and lysine on dry matter intake (DMI), milk yield and composition, and nutrient digestibility in Holstein dairy cows in early lactation.

 

Materials and Methods

 Twelve multiparous (parity = 2; average milk yield = 48 ± 1; days in milk = 80 ± 2) Holstein dairy cows were used in replicated 4×4 Latin square design (4 treatments in 4 periods). Each period lasted 21 d with 14 d of experimental diets adaptation and 7 d of data recording and sample collection. The experimental diets included 1- diet containing 17.32% CP without rumen-protected lysine (RPL)and rumen-protected methionine (RPM) supplementation (CP17.32-NoRPL-NoRPM), 2- diet containing 16.08% CP and 0.045% RPM (CP16.08-RPM0.045%), 3- diet containing 15.18% CP and 0.075% RPM (CP15.18-RPM0.075%), and 4- diet containing 14.2% CP, 0.105% RPM, and 0.037% RPL (CP14.2-RPM0.105%-RPL0.037%). The DMI, milk yield and composition, and nutrient digestibility were measured at last 7-d of each experimental period. Data of this experiment were analyzed using SAS statistical software and PROC MIXED procedure. The mean of the treatments were compared using the Tukey test, and the effects of factors in the model were considered significant at a probability level of less than or equal to 0.05, and a tendency to significance was considered at a probability level of greater than 0.05 and less than or equal to 0.10.

 

Results

      Results showed that the lowest DMI was observed in cows fed CP14.2-RPM0.105%-RPL0.037% and CP15.18-RPM0.075% diets compared to others (P<0.05). Milk yield, 4% fat corrected milk, energy corrected milk and milk component production were not affected by the experimental diets (P<0.05). Milk fat percentage tended to be higher in cows fed CP14.2-RPM0.105%-RPL0.037% and CP15.18-RPM0.075% diets compared to others (P=0.07). Milk protein, lactose and solid not fat were not affected by dietary CP level and RPM and RPL supplement (P<0.05). The highest total solid percentage and the lowest concentration of milk urea nitrogen (MUN) were observed in cows fed CP14.2-RPM0.105%-RPL0.037% and CP15.18-RPM0.075% diets compared to others (P<0.05). Experimental diets did not affect total tract apparent digestibility of dry matter (DM) and organic matter (OM) (P<0.05). The highest total tract apparent digestibility of CP were observed in cows fed CP17.32-NoRPL-NoRPM (P<0.05).

 

Conclusion

      The results of this study showed that the reduction of RUP level without providing essential AAs decreased production performance of dairy cows during early lactation. However, addition of protected lysine and methionine supplements compensated the negative effects of RUP reduction and improved milk yield and composition. These results indicate that diet modification based on the appropriate provision of essential AAs can help improve the production performance, milk quality and nutritional efficiency of dairy cows. This study emphasizes the importance of accurate nutrient supply in dairy cow diets, especially in the early lactation period. Furthermore, these findings can help producers for designing optimal nutritional strategies to improve the efficiency and productivity of their dairy cows.

 

Data Availability Statement

This article contains all the data that were created or evaluated during the research.

Acknowledgements

The authors would like to sincerely thank the members of the Faculty of Animal Sciences, University of Tehran Research Council for the approval and support of this research.

Conflict of interest

The author declares no conflict of interest.

 

REFERENCES
Abdelmegeid, M. K., Elolimy, A. A., Zhou, Z., Lopreiato, V., McCann, J., & Loor, J. J. (2018). Rumen-protected methionine during the peripartal period in dairy cows and its effects on abundance of major species of ruminal bacteria. Journal of Animal Science Biotechnolgy, 9, 17-24.
Allen, M. S. (2000). Effects of diet on short-term regulation of feed intake by lactating dairy cattle. Journal of Dairy Science, 83, 1598-1624.
Amanlou, H., Farahani, T. A., & Farsuni, N. E. (2017). Effects of rumen undegradable protein supplementation on productive performance and indicators of protein and energy metabolism in Holstein fresh cows. Journal of Dairy Science, 100(5), 3628-3640.
AOAC. (2000). Official Methods of Analysis. 17th ed. AOAC International, Gaithersburg, MD.
Arriola Apelo, S. I., Bell, A. L., Estes, K., Ropelewski, J., de Veth, M. J., Amanlou, H., Farahani, T. A., & Farsuni, N. E. (2017). Effects of rumen undegradable protein supplementation on productive performance and indicators of protein and energy metabolism in Holstein fresh cows. Journal of Dairy Science,
Bach, A., Calsamiglia, S., & Stern, M. (2005). Nitrogen metabolism in the rumen. Journal of Dairy Science, 88, 9-21.
Bahrami-Yekdangi, H., Khorvash, M., Ghorbani, G. R., Alikhani, M., Jahanian, R., & Kamalian, E. (2014). Effects of decreasing metabolizable protein and rumen undegradable protein on milk production and composition and blood metabolites of Holstein dairy cows in early lactation. Journal of Dairy Science, 97, 3707- 3714.
Batistel, F., Arroyo, J. M., Bellingeri, A., Wang, L., Saremi, B., Parys, C., Trevisi, E., Cardoso, F. C., & Loor, J. J. (2017). Ethyl-cellulose rumen protected methionine enhances performance during the periparturient period and early lactation in Holstein dairy cows. Journal of Dairy Science, 100, 7455-7467.
Bell, A. W. (1995). Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. Journal of Animal Sicence, 73, 2804-2819.
Benefield, B., Patton, R., Stevenson, M., & Overton, T. (2006). Evaluation of rumen-protected methionine (RP-Met) sources and period length on performance of lactating dairy cows within latin squares. Journal of Animal Sicence, 84, 76-86.
Blouin, J., Bernier, J., Reynolds, C., Lobley, G., Dubreuil, P., & Lapierre, H. (2002). Effect of supply of metabolizable protein on splanchnic fluxes of nutrients and hormones in lactating dairy cows. Journal of Dairy Science, 85, 2618-2630.
Broderick, G. A., Stevenson, M. J., & Patton, R. A. (2009). Effect of dietary protein concentration and degradability on response to rumen-protected methionine in lactating Dairy cows. Journal of Dairy Science, 92, 2719-2728.
Broderick, G. A., Stevenson, M. J., Patton, R. A., Lobos, N., & Olmos Colmenero, J. J. (2008). Effect of supplementing rumen-protected methionine on production and nitrogen excretion in lactating dairy cows. Journal of Dairy Science, 91, 1092-1102.
Butler, W. R. (1998). Review: Effect of protein nutrition on ovarian and uterine physiology in dairy cattle. Journal of Dairy Science, 81, 2533-2539.
Davidson, S., Hopkins, B. A., Diaz, D. E., Bolt, S. M., Brownie C., Fellner, V., & Whitlow, L. W. (2003). Effects of amounts and degradability of dietary protein on lactation, nitrogen utilization, and excretion in early lactation Holstein cows. Journal of Dairy Science, 86, 1681-1689.
Ipharraguerre, I. R., & Clark, J. H. (2005). Varying protein and starch in the diet of dairy cows. II. Effects on performance and nitrogen utilization for milk production. Journal of Dairy Science, 88, 2556-2570.
Jenkins, T. C., Bertrand, J. A., & Bridges, Jr W. C. (1998). Interactions of tallow and hay particle size on yield and composition of milk from lactating Holstein cows. Journal of Dairy Science, 81, 1396-1402.
Ji, P., & Dann, H. M. (2013). Negative protein balance: implications for transition cows. Proc. Cornell Nutrition Conference, Cornell University, NY, Syracuse, NY, pp: 101-112.
Johnson, R. G., & Young, A. G. (2003). The association between milk urea nitrogen and DHI production variables in western commercial dairy herds. Journal of Dairy Science, 86, 3008-3015.
Jonker, J. S., Kohn, R., & Erdman, R. (1998). Using milk urea nitrogen to predict nitrogen excretion and utilization efficiency in lactating dairy cows. Journal of Dairy Science, 81, 2681-2692.
Kalscheur, K. F., Vandersall, J. H., Erdman, R. A., Kohn, R. A., & Russek-Cohen, E. (1999). Effects of dietary crude protein concentration and degradability on milk production responses of early, mid, and late lactation dairy cows. Journal of Dairy Science, 82, 545-554.
Law, R. A., Young, F., Patterson, D., Kilpatrick, D., Wylie, A., & Mayne, C. (2009). Effect of dietary protein content on animal production and blood metabolites of dairy cows during lactation. Journal of Dairy Science, 92, 1001-1012.
Lee, C., Giallongo, F., Hristov, A. N., Lapierre, H., Cassidy, T., Heyler, K. S., Varga, G. A. & Parys C. (2015). Effect of dietary protein level and rumen-protected amino acid supplementation on amino acid utilization for milk protein in lactating dairy cows. Journal of Dairy Science, 98, 1885-902.
Li, Y., Wei, J., Dou, M., Liu, S., Yan, B., Li, C., Khan, M. Z., Zhang, Y. & Xiao, J. (2022). Effects of rumen-protected methionine supplementation on production performance, apparent digestibility, blood parameters, and ruminal fermentation of lactating Holstein dairy cows. Frontiers in Veterinary Science, 9, 981757-981764.
Malacco, V. M. R., Beckett, L., Hilger, S., Doane, P., Reis, R. B., & Donkin S. S. (2022). Effects of increased doses of lysine in a rumen-protected form on plasma amino acid concentration and lactational performance of dairy cows fed a lysine-deficient diet. Journal of Dairy Science, 105, 3064-3077.
Mulligan, F. J., Dillon, P., Callan, J. J., Rath, M., & Mara, F. P. O. (2004). Supplementary concentrate type affects nitrogen excretion of grazing dairy cows. Journal of Dairy Science, 87, 3451-3460.
National Research Council (NRC). (2001). Nutrient Requirements of Dairy Cattle. 7th Revised Edition, National Academy Science., Washington, DC.
National Research Council (NRC). (2021). Nutrient Requirements of Dairy Cattle. 8th Revised Edition, National Academy Science., Washington, DC.
Neiderfer, K. P., Mechor, G. D., Gandra, J., Barlett, K. S., Lee, C. J., & Kronfeld, D. S. (2020). Effects of calcium carbonate, magnesium oxide and encapsulated sodium bicarbonate on measures of post-ruminal fermentation. Journal of Animal Physiology and Animal Nutrition, 104, 802-811.
Nursoy, H., Ronquillo, M. G., Faciola, A. P., & Broderick, G. (2018). Lactation response to soybean meal and rumen-protected methionine supplementation of corn silage based diets. Journal of Dairy Science, 101, 2084-2095.
Oldick, B., Firkins, J., & St-Pierre, N. (1999). Estimation of microbial nitrogen flow to the duodenum of cattle based on dry matter intake and diet composition. Journal of Dairy Science, 82, 1497-1511.
Osorio, J. S., Ji, P., Drackley, J. K., Luchini, D., & Loor, J. J. (2013). Supplemental Smart amine M or Meta Smart during the transition period benefits post partal cow performance and blood neutrophil function. Journal of Dairy Science, 96, 6248-6263.
Patton, R. A. (2010). Effect of rumen-protected methionine on feed intake, milk production, true milk protein concentration, and true milk protein yield, and the factors that influence these effects: A meta-analysis. Journal of Dairy Science, 93, 2105-2118.
Raggio, G., Pacheco, D., Berthiaume, R., Lobley, G., Pellerin, D., Allard, G., Dubreuil, P., & Lapierre, H. (2004). Effect of level of metabolizable protein on splanchnic flux of amino acids in lactating dairy cows. Journal of Dairy Science, 87, 3461-3472.
Salsbury, R. L., Marvil, D. K., Woodmansee, C. W., & Haenlein, G. (1971). Utilization of methionine and methionine hydroxy analog by rumen microorganisms in vitro. Journal of Dairy Science, 54, 390-396.
Santos, F., Santos, J., Theurer, C., & Huber, J. (1998). Effects of rumen-undegradable protein on dairy cow performance: A 12-Year literature review. Journal of Dairy Science, 81, 3182-3213.
Schwab, C. (1994). Optimizing amino acid nutrition for optimum yields of milk and milk protein. Southwest Nutrition Management Conference, 1, 114-129.
Schwab, C. G. (2010). Balancing diets for amino acids: Nutritional, environmental and financial implications. Tri –State Dairy Nutrition Conference, 1, 1-13.
Schwab, C. G., & Broderick, G. A. (2017). A 100-Year Review: Protein and amino acid nutrition in dairy cows. Journal of Dairy Science, 100, 10094-10112.
Schwab, C. G., Bozak, C. K., Whitehouse, N. L., & Mesbah, M. M. A. (2005). Amino acid lLimitation and flow to duodenum at four stages of lactation. 1. Sequence of lysine and methionine limitation1, 2. Journal of Dairy Science, 75, 3486-3502.
Socha, M. T., Putnam, D. E., Garthwaite, B. D., Whitehouse, N. L., Kierstead, N. A. Schwab, C. G., Ducharme, G. A., & Robert, J. C. (2005). Improving intestinal amino acid supply of preand postpartum dairy cows with rumenprotected methionine and lysine. Journal of Dairy Science, 88, 1113-1126.
Stevens, A. V., Karges, K., Rezamand, P., Laarman, A. H., & Chibisa, G. E. (2021). Production performance and nitrogen metabolism in dairy cows fed supplemental blends of rumen undegradable protein and rumen-protected amino acids in low- compared with high-protein diets containing corn distiller’s grains. Journal of Dairy Science, 104, 4134-4145.
Stokes, S. R., Hoover, W. H., Miller, T. K., & Blauweikel, R. (1991). Ruminal digestion and microbial utilization of diets varying in type of carbohydrate and protein. Journal of Dairy Science, 74, 871-81.
Van Keulen, J., & Young, B. A. (1977). Acid insoluble ash as a natural marker for digestibility studies. Journal of Dairy Science, 44: 282-287.
Van Soest, P.J, Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583-3597.
Weekes, T. L., Luimes, P. H., & Cant, J. P. (2006). Responses to amino acid imbalances and deficiencies inlactating dairy cows. Journal of Dairy Science, 89, 2177-2187.
Zou, S., Ji, S., Xu, H., Wang, M., Li, B., Shen, Y., Li, Y., Gao, Y., Li, J. Cao, Y., & Li, Q. (2023). Rumen-protected lysine and methionine supplementation reduced protein requirement of Holstein bulls by altering nitrogen metabolism in liver. Animals, 13, 843-856.