REFERENCES
Abeyta, M. A., Horst, E. A., Mayorga, E. J., Goetz, B. M., Al-Qaisi, M., McCarthy, C. S., ... & Baumgard, L. H. (2023). Effects of hindgut acidosis on metabolism, inflammation, and production in dairy cows consuming a standard lactation diet.
Journal of Dairy Science,
106(2), 1429-1440.
https://doi.org/10.3168/jds.2022-22303
Abeyta, M. A., Horst, E. A., Rodriguez-Jimenez, S. J., May-Orga, E. J., Goetz, B. M., Al-Qaisi, M., ... & Baumgard, L. H. (2019, January). Effects of hindgut acidosis on metabolism, inflammation, and production in dairy cows acclimated to a low-starch diet. In JOURNAL OF DAIRY SCIENCE (Vol. 102, pp. 402-402). STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA: ELSEVIER SCIENCE INC.
Adesogan, A. T., Arriola, K. G., Jiang, Y., Oyebade, A., Paula, E. M., Pech-Cervantes, A. A., ... & Vyas, D. (2019). Symposium review: Technologies for improving fiber utilization.
Journal of dairy science,
102(6), 5726-5755.
https://doi.org/10.3168/jds.2018-15334
Allen, M. S., Longuski, R. A., & Ying, Y. (2021). Effects of corn grain endosperm type and fineness of grind on feed intake, feeding behavior, and productive performance of lactating dairy cows.
Journal of Dairy Science,
104(7), 7630-7640.
https://doi.org/10.3168/jds.2020-18991
AOAC. (2012). Official methods of analysis. Association of Official Analytical Chemists, 881-82.
Atkinson, G. A., Smith, L. N., Smith, M. L., Reynolds, C. K., Humphries, D. J., Moorby, J. M., ... & Kingston-Smith, A. H. (2020). A computer vision approach to improving cattle digestive health by the monitoring of faecal samples.
Scientific Reports,
10(1), 17557.
https://doi.org/10.1038/s41598-020-74511-0
Chen, P., Li, Y., Wang, M., Shen, Y., Liu, M., Xu, H., ... & Li, J. (2024). Optimizing dietary rumen-degradable starch to rumen-degradable protein ratio improves lactation performance and nitrogen utilization efficiency in mid-lactating Holstein dairy cows.
Frontiers in Veterinary Science,
11, 1330876.
https://doi.org/10.3389/fvets.2024.1330876
Conway, L. K., Hallford, D. M., & Soto-Navarro, S. A. (2012). Effects of wet corn gluten feed and yellow grease on digestive function of cattle fed steam-flaked corn-based finishing diets.
Animal feed science and technology,
178(1-2), 20-26.
https://doi.org/10.1016/j.anifeedsci.2012.09.003
Cueva, S. F., Wasson, D. E., Martins, L. F., Räisänen, S. E., Silvestre, T., & Hristov, A. N. (2024). Lactational performance, ruminal fermentation, and enteric gas emission of dairy cows fed an amylase-enabled corn silage in diets with different starch concentrations.
Journal of dairy science,
107(7), 4426-4448.
https://doi.org/10.3168/jds.2023-23957
Dann, H. M., Tucker, H. A., Cotanch, K. W., Krawczel, P. D., Mooney, C. S., Grant, R. J., & Eguchi, T. (2014). Evaluation of lower-starch diets for lactating Holstein dairy cows.
Journal of dairy science,
97(11), 7151-7161.
https://doi.org/10.3168/jds.2014-8341
Darabighane, B., Tapio, I., Ventto, L., Kairenius, P., Stefański, T., Leskinen, H., ... & Bayat, A. R. (2021). Effects of starch level and a mixture of sunflower and fish oils on nutrient intake and digestibility, rumen fermentation, and ruminal methane emissions in dairy cows.
Animals,
11(5), 1310.
https://doi.org/10.3390/ani11051310
Fernandez, J. A., Coppock, C. E., & Schake, L. M. (1982). Effect of calcium buffers and whole plant processing on starch digestibility of sorghum based diets in Holstein cows.
Journal of Dairy Science,
65(2), 242-249.
https://doi.org/10.3168/jds.S0022-0302(82)82183-8
Ferraretto, L. F., P. M. Crump, and R. D. Shaver. 2013. Effect of cereal grain type and corn grain harvesting and processing methods on intake, digestion, and milk production by dairy cows through a meta-analysis. J. Dairy Sci. 96:533–550.
https://doi.org/10.3168/jds.2012-5932
Firkins, J. L., Eastridge, M. L., St-Pierre, N. R., & Noftsger, S. M. (2001). Effects of grain variability and processing on starch utilization by lactating dairy cattle.
Journal of animal science,
79(suppl_E), E218-E238.
https://doi.org/10.2527/jas2001.79E-SupplE218x
Fredin, S. M., Ferraretto, L. F., Akins, M. S., Hoffman, P. C., & Shaver, R. D. (2014). Fecal starch as an indicator of total-tract starch digestibility by lactating dairy cows.
Journal of dairy science,
97(3), 1862-1871.
https://doi.org/10.3168/jds.2013-7395
Gallo, A., Giuberti, G., & Masoero, F. (2016). Gas production and starch degradability of corn and barley meals differing in mean particle size.
Journal of dairy science,
99(6), 4347-4359.
https://doi.org/10.3168/jds.2015-10779
Grant, R. J., & Chazy, N. Y. (2010). Lowering cost of production with feed efficiency and cow comfort. Agricultural Research Institute Chazy, NY.
Hall, M. B. (2009). Determination of starch, including maltooligosaccharides, in animal feeds: Comparison of methods and a method recommended for AOAC collaborative study.
Journal of AOAC International,
92(1), 42-49.
https://doi.org/10.1093/jaoac/92.1.42
Harmon, D. L., & McLeod, K. R. (2001). Glucose uptake and regulation by intestinal tissues: Implications and whole-body energetics.
Journal of Animal Science,
79(suppl_E), E59-E72.
https://doi.org/10.2527/jas2001.79E-SupplE59x
Hoffman, P. C., Esser, N. M., Shaver, R. D., Coblentz, W. K., Scott, M. P., Bodnar, A. L., ... & Charley, R. C. (2011). Influence of ensiling time and inoculation on alteration of the starch-protein matrix in high-moisture corn.
Journal of dairy science,
94(5), 2465-2474.
https://doi.org/10.3168/jds.2010-3562
Hutjens, M. F. (2011). More efficient rations are headed our way-Researchers focused on more effectively feeding starch, minerals, protein, and forages to improve efficiency and health without compromising production. Hoard's Dairyman, 156(16), 593.
Khorrami, B., Kheirandish, P., Zebeli, Q., & Castillo-Lopez, E. (2022). Variations in fecal pH and fecal particle size due to changes in dietary starch: Their potential as an on-farm tool for assessing the risk of ruminal acidosis in dairy cattle.
Research in Veterinary Science,
152, 678-686.
https://doi.org/10.1016/j.rvsc.2022.10.001
Kljak, K., Heinrichs, B. S., & Heinrichs, A. J. (2019). Fecal particle dry matter and fiber distribution of heifers fed ad libitum and restricted with low and high forage quality.
Journal of dairy science,
102(5), 4694-4703.
https://doi.org/10.3168/jds.2018-15457
Krogstad, K. C., & Bradford, B. J. (2023). Does feeding starch contribute to the risk of systemic inflammation in dairy cattle?.
JDS communications,
4(1), 14-18.
https://doi.org/10.3168/jdsc.2022-0303
Liu, S., Wei, Z., Deng, M., Xian, Z., Liu, D., Liu, G., ... & Guo, Y. (2023). Effect of a high-starch or a high-fat diet on the milk performance, apparent nutrient digestibility, hindgut fermentation parameters and microbiota of lactating cows.
Animals,
13(15), 2508.
https://doi.org/10.3390/ani13152508
Liu, Y. F., Zhao, H. B., Liu, X. M., You, W., Cheng, H. J., Wan, F. C., ... & Zhang, X. L. (2015). Substitution of wheat for corn in beef cattle diets: digestibility, digestive enzyme activities, serum metabolite contents and ruminal fermentation.
Asian-Australasian journal of animal sciences,
29(10), 1424.
https://doi.org/10.5713/ajas.15.0866
Matamura, M., Naito, H., Morio, Y., & Kondo, M. (2024). Fecal image-based starch digestibility estimation in fattening cattle using deep learning.
Computers and Electronics in Agriculture,
225, 109246.
https://doi.org/10.1016/j.compag.2024.109246
Matthé, A., Lebzien, P., Hric, I., Flachowsky, G., & Sommer, A. (2001). Effect of starch application into the proximal duodenum of ruminants on starch digestibility in the small and total intestine.
Archives of Animal Nutrition,
55(4), 351-369.
https://doi.org/10.1080/17450390109386202
McCarthy, C. S., Dooley, B. C., Branstad, E. H., Kramer, A. J., Horst, E. A., Mayorga, E. J., ... & Baumgard, L. H. (2020). Energetic metabolism, milk production, and inflammatory response of transition dairy cows fed rumen-protected glucose.
Journal of Dairy Science,
103(8), 7451-7461.
https://doi.org/10.3168/jds.2020-18151.
Mertens, D. R. (2002). Determination of starch in large particles. Ro-Tap shaker method. US Dairy Forage Research Center, Madison, WI. Revised April.
Mills, J. A., France, J., Ellis, J. L., Crompton, L. A., Bannink, A., Hanigan, M. D., & Dijkstra, J. (2017). A mechanistic model of small intestinal starch digestion and glucose uptake in the cow.
Journal of Dairy Science,
100(6), 4650-4670.
https://doi.org/10.3168/jds.2016-12122
Mutsvangwa, T., Davies, K. L., McKinnon, J. J., & Christensen, D. A. (2016). Effects of dietary crude protein and rumen-degradable protein concentrations on urea recycling, nitrogen balance, omasal nutrient flow, and milk production in dairy cows.
Journal of dairy science,
99(8), 6298-6310.
https://doi.org/10.3168/jds.2016-10917
National Academies of Sciences, Engineering, and Medicine. (NASEM) (2021). Nutrient Requirements of Dairy Cattle.
Neubauer, V., Petri, R. M., Humer, E., Kröger, I., Reisinger, N., Baumgartner, W., ... & Zebeli, Q. (2020). Starch-rich diet induced rumen acidosis and hindgut dysbiosis in dairy cows of different lactations.
Animals,
10(10), 1727.
https://doi.org/10.3390/ani10101727
Owens, C. E., Zinn, R. A., Hassen, A., & Owens, F. N. (2016). Mathematical linkage of total-tract digestion of starch and neutral detergent fiber to their fecal concentrations and the effect of site of starch digestion on extent of digestion and energetic efficiency of cattle.
The Professional Animal Scientist,
32(5), 531-549.
https://doi.org/10.15232/pas.2016-01510
Owens, F. N., & Zinn, R. A. (2005, March). Corn grain for cattle: Influence of processing on site and extent of digestion. In Proc. Southwest Nutr. Conf (Vol. 86, p. 112). Tucson: University of Arizona.
Pan, X. H., Yang, L., Beckers, Y., Xue, F. G., Tang, Z. W., Jiang, L. S., & Xiong, B. H. (2017). Thiamine supplementation facilitates thiamine transporter expression in the rumen epithelium and attenuates high-grain-induced inflammation in low-yielding dairy cows.
Journal of Dairy Science,
100(7), 5329-5342.
https://doi.org/10.3168/jds.2016-11966
Patton, R. A., Patton, J. R., & Boucher, S. E. (2012). Defining ruminal and total-tract starch degradation for adult dairy cattle using in vivo data.
Journal of dairy science,
95(2), 765-782.
https://doi.org/10.3168/jds.2011-4183
Reis, W. L., Palma, M. N., Paulino, M. F., Rennó, L. N., & Detmann, E. (2020). Investigation on daily or every three days supplementation with protein or protein and starch of cattle fed tropical forage.
Animal Feed Science and Technology,
269, 114650.
https://doi.org/10.1016/j.anifeedsci.2020.114650
Rodriguez-Jimenez, S., McCarthy, C. S., Horst, E. A., Mayorga, E. J., Al-Qaisi, M., Abeyta, M. A., ... & Baumgard, L. H. (2019, January). Relationships between fecal pH and milk production, metabolism, and acute phase protein response in periparturient dairy cows. In JOURNAL OF DAIRY SCIENCE (Vol. 102, pp. 402-402). STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA: ELSEVIER SCIENCE INC.
Salfer, I. J., Morelli, M. C., Ying, Y., Allen, M. S., & Harvatine, K. J. (2018). The effects of source and concentration of dietary fiber, starch, and fatty acids on the daily patterns of feed intake, rumination, and rumen pH in dairy cows.
Journal of Dairy Science,
101(12), 10911-10921.
https://doi.org/10.3168/jds.2018-15071
Sanz-Fernandez, M. V., Daniel, J. B., Seymour, D. J., Kvidera, S. K., Bester, Z., Doelman, J., & Martín-Tereso, J. (2020). Targeting the hindgut to improve health and performance in cattle.
Animals,
10(10), 1817.
https://doi.org/10.3390/ani10101817.
SAS Institute. (2019). SAS Certified Professional Prep Guide: Advanced Programming Using SAS 9.4. SAS institute.
Shipandeni, M. N., Paula, E. M., Esposito, G., Faciola, A. P., & Raffrenato, E. (2023). Effects of starch sources varying in particle sizes on ruminal fermentation, nutrient flow, starch digestibility, and lactation performance of dairy cows.
Journal of Animal Science,
101, skad147.
https://doi.org/10.1093/jas/skad147
Silvestre, T., Fetter, M., Räisänen, S. E., Lage, C. F. A., Stefenoni, H., Melgar, A., ... & Hristov, A. N. (2022). Performance of dairy cows fed normal-or reduced-starch diets supplemented with an exogenous enzyme preparation.
Journal of dairy science,
105(3), 2288-2300.
https://doi.org/10.3168/jds.2021-21264
Trotta, R. J., Harmon, D. L., Matthews, J. C., & Swanson, K. C. (2021). Nutritional and physiological constraints contributing to limitations in small intestinal starch digestion and glucose absorption in ruminants.
Ruminants,
2(1), 1-26.
https://doi.org/10.3390/ruminants2010001.
Van Gastelen, S., Dijkstra, J., Alferink, S. J., Binnendijk, G., Nichols, K., Zandstra, T., & Bannink, A. (2021). Abomasal infusion of corn starch and β-hydroxybutyrate in early-lactation Holstein-Friesian dairy cows to induce hindgut and metabolic acidosis.
Journal of Dairy Science,
104(12), 12520-12539.
https://doi.org/10.3168/jds.2021-20323.
Van Soest, P. V., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition.
Journal of dairy science,
74(10), 3583-3597.
https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Wildman, E. E., Jones, G. M., Wagner, P. E., Boman, R. L., Troutt Jr, H. F., & Lesch, T. N. (1982). A dairy cow body condition scoring system and its relationship to selected production characteristics.
Journal of dairy science,
65(3), 495-501.
https://doi.org/10.3168/jds.S0022-0302(82)82223-6
Zhao, Y., Yu, S., Zhao, H., Li, L., Li, Y., Liu, M., & Jiang, L. (2023). Integrated multi-omics analysis reveals the positive leverage of citrus flavonoids on hindgut microbiota and host homeostasis by modulating sphingolipid metabolism in mid-lactation dairy cows consuming a high-starch diet.
Microbiome,
11(1), 236.
https://doi.org/10.1186/s40168-023-01661-4
Zinn, R. A., Barreras, A., Corona, L., Owens, F. N., & Ware, R. A. (2007). Starch digestion by feedlot cattle: Predictions from analysis of feed and fecal starch and nitrogen.
Journal of animal science,
85(7), 1727-1730.
https://doi.org/10.2527/jas.2006-556
Zinn, R. A., Owens, F. N., & Ware, R. A. (2002). Flaking corn: processing mechanics, quality standards, and impacts on energy availability and performance of feedlot cattle.
Journal of Animal Science,
80(5), 1145-1156.
https://doi.org/10.2527/2002.8051145x