ارزیابی انرژی قابل سوخت و ساز کنجاله آفتابگردان با و بدون آنزیم به روش رگرسیون در خروس‌ های بالغ لگهورن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

2 بهداشت ومواد غذایی، دامپزشکی، دانشگاه آزاد اسلامی، واحد تبریز، تبریز، ایران.

چکیده

آزمایشی در قالب طرح کاملاً تصادفی به روش فاکتوریل با چهار سطح کنجاله آفتابگردان (0، 5 ، 10، 15) و دو سطح آنزیم (0 ، 350 گرم در تن) با استفاده از 48  قطعه خروس بالغ لگهورن به منظور تعیین مقادیر انرژی قابل سوخت‌و‌ساز‌ظاهری تصحیح شده برای نقطه صفر تعادل نیتروژن (AMEn) کنجاله­آفتابگردان به روش روش رگرسیون انجام شد. میانگین ماده­خشک، خاکستر، پروتئینخام، عصاره‌اتری، فیبر نامحلول در شوینده خنثی (NDF) و فیبر نامحلول در شوینده اسیدی ( (ADFدر این آزمایش به ترتیب90/88، 5/6، 33/32، 1/3، 8/44، 25 درصد و انرژی‌خام کنجاله‌آفتابگردان نیز برابر 4547 کیلوکالری در کیلوگرم بدست آمد. مقادیر AMEn کنجاله‌آفتابگردان به روش اختلاف در جیره‌پایه تعیین شد. با افزایش سطوح کنجاله‌آفتابگردان مقادیر قابلیت سوخت‌و‌ساز ماده­خشک ، ماده­آلی، AMEn و بازده انرژی‌خام به طور معنی داری کاهش یافت (05/0>P). مقدار AMEn برابر 89/7 درصد معادل260 کیلوکالری در کیلوگرم درجیره حاوی سطح 15درصد کنجاله‌آفتابگردان در مقایسه با جیره کنترل فاقد کنجاله‌آفتابگردان کاهش یافت. اثرات اصلی سطح آنزیم باعث افزایش معنی­دار مقادیر AMEn و بازده انرژی‌خام شد (05/0>P )، بطوری­که باعث بهبود AMEn به میزان 14/1 درصد گردید. معادلات برآورد کننده AMEn کنجاله‌آفتابگردان با  و بدون  آنزیم  به ترتیب برابر Y=2009.75-4.171X  با ضریب تعیین 9/0 و  Y=1596.14-2.414X با ضریب تبیین 91/0 بود. مقدار AMEn کنجاله‌آفتابگردان با و بدون آنزیم به ترتیب برابر با 1592و 1354 کیلوکالری در کیلوگرم برآورد شد. مقادیر حاصله برای AMEn  کنجاله‌آفتابگردان در  مطالعه حاضر برای تنظیم جیره های غذایی طیور پیشنهاد شده و احنمالاً می تواند در پیشگویی عملکرد  پرنده موثر باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determination of metabolizable energy value in Sunflower meal with and without enzymes addition by regression method in adult leghorn roosters

نویسندگان [English]

  • Ronak Zamani 1
  • Hossein Janmohammadi 1
  • Yousef Didehban 1
  • Ali Khodadadi 2
1 Department of Animal Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
2 Food Hygiene, Veterinary Medicine, Islamic Azad University, Tabriz Branch, Tabriz, Iran.
چکیده [English]

The present study was to determine apparent metabolizable energy values corrected to zero nitrogen balance (AMEn) of Sunflower Meal (SFM) with and without enzyme by regression method in adult Leghorn roosters. 48 adult Leghorn roosters were used in a completely randomized design as a 2×4 factorial arrangement, two levels of enzyme (0, 350 g/ ton) × four levels (o, 5, 10, 15 %) of SFM. The average values of DM, Ash, CP, EE, Neutral Detergent Fiber (NDF), and acid Detergent Fiber (ADF) were 88.90, 6.5, 32.33, 3.1, 44.8, and 25% respectively and gross energy value of SFM was 4547 kcal/kg. By increasing the level of SFM in the experimental diets, the values of apparent dry matter metabolizability (ADMM), apparent  organic dry matter metabolizability (AOMM), AMEn, and GE efficiency decreased significantly (p<0.05). The amount of AMEn decreased by 7.89%, equivalent to 260 kcal/kg in the diet containing 15% SFM compared to the control diet without SFM. The main effects of enzyme level caused a significant increase in AMEn values and GE efficiency (P<0.05). The improvement of AMEn was 1.14 percent. The equations for estimating AMEn of SFM, with and without enzyme addition were Y=2009.75-4.171X (R2=0.91) and Y=1596.14-2.414X (R2=0.91), respectively.  AMEn value of SFM with and without enzyme by regression method was estimated 1592 and 1354 kcal/kg, respectively. The values obtained for AMEn of sunflower meal at the present study are recommended for formulating poultry diets and it could be probably effective in predicting bird performance.

کلیدواژه‌ها [English]

  • Regression method
  • metabolizable energy
  • Sunflower meal
  • Enzyme
  • adult Leghorn roosters

Extended Abstract

Introduction

In the poultry industry, feed costs account for the majority of production costs, making sudden changes in feed prices challenging for nutritionists to maintain animal performance and health while managing feed costs. The first solution that comes to mind is the use of cheap raw materials when preparing food rations in practical conditions. In addition, the feed used in the diet must be digestible by the poultry in the digestive tract. Feeds such as sunflower meal (SFM) due to their high cellulose content are not digested because there is no cellulase secretion in the digestive tract. The use of several enzymes that increase the digestibility of nutrients and reduce anti-nutritional compounds such as cellulose and non-starch polysaccharides in diets with sunflower meal can positively affect performance and profitability in poultry nutrition.  The evaluation of a feed is completed by determining its nutrients and measuring its metabolizable energy. There are different methods to determine the amounts of metabolizable energy in poultry, each of which has advantages and disadvantages. The regression method is one of the methods of determining metabolizable energy, which provides the possibility of studying metabolizable energy in practical diets and at different levels. The aim of this experiment is to determine the amount of apparent metabolizable energy corrected for the zero point of nitrogen balance (AMEn) of sunflower meal with and without enzyme by regression method in adult Leghorn roosters.

 

Materials and methods

Sunflower meal samples were obtained from animal feed mills in East Azerbaijan, and its chemical composition was measured according to standard methods. 48 adult Leghorn roosters were used in a completely randomized design as a 2×4 factorial arrangement, two levels of enzyme ( 0 , 350 gm /kg × four levels (o, 5,10, 15 %) of SFM.   SFM was replaced in different levels in a corn - soybean meal based diet. A total of 48 adult Leghorn roosters of the W36 strain with a similar average weight (1960 ± 72) were used. The roosters were housed in individual cages measuring 40 × 45 × 40 cm with separate feeders and drinking water at the metabolic cage. The temperature was maintained in the range of 20 to 26 °C for adult roosters in the metabolic room and a photoperiod of 16 hours of light and 8 hours of darkness was used. The roosters were fed a maintenance diet during the breeding period.

A corn-soybean meal basal diet was fed to meet nutrient requirements of the roosters. The European method was used to determine apparent metabolizable energy corrected to zero point nitrogen balance in the basal and experimental diets. Adult roosters were fed the experimental diets for 9 days (four days of adaptation to the experimental diets, one day of starvation before the start of feeding experimental diet, three days of feeding the experimental diets and one day of starvation after end of the feeding period). The amount of each experimental diet consumed during the experiment was recorded and all droppings were collected and stored in plastic bags at -20°C in a freezer until chemical analysis. After removing the droppings from the freezer, they were kept at laboratory temperature for thawing and then dried in an oven at 70°C for three days. After removing the droppings from the oven, they were cooled in a desiccator and placed in the laboratory for 24 hours for moisture exchange, and then weighed with a scale with an accuracy of 3 decimal places. For chemical analysis, the dried excreta were crushed with a mortar and pestle, and the remains of feathers and scales were separated and then ground with a 1 mm sieve.

 

Results and discussion

The average values of DM, Ash, CP, EE, Neutral Detergent Fiber (NDF), and acid Detergent Fiber (ADF) were 88.9, 6.5, 32.33, 3.1, 44.8, 25%, respectively and gross energy value of SFM was 4547 kcal/kg.

With increasing the level of SFM in the experimental diets, the values of ADMM, AOMM, AMEn, and GE efficiency decreased significantly (p<0.05). The amount of AMEn decreased by 7.89%, equivalent to 260 kcal/kg in the diet containing 15% SFM compared to the control diet without SFM. The main effects of enzyme level caused a significant increase in AMEn values and GE efficiency of SFM (P<0.05). The equations for estimating AMEn of SFM, with and without enzyme addition were Y=2009.75-4.171X (R2=0.91) and Y=1596.14-2.414X (R2=0.91), respectively.  AMEn value of SFM with and without enzyme by regression method was estimated 1592 and 1354 kcal/kg, respectively.

 

Conclusions

The values obtained for AMEn of sunflower meal at the present study are recommended for formulating poultry diets and it could be probably better for predicting bird performance.

 

Author Contributions

 Zamani, R., Janmohammadi, H., Dedehban, Y. & Khodadadi, A. contributed to conception, design, data collection, statistical analysis, and drafting of the manuscript. All authors approved the final version for submission.

Data Availability Statement

This article contains all the data that were created or evaluated during the research.

Acknowledgements

 The authors would like to sincerely thank the members of Department of Animal Science, Faculty of Agriculture, Tabriz University for the approval and support of this research.

 Conflict of interest

 The author declares no conflict of interest.

REFERENCES
Abbasi, B., Fadaeli, H., Zahdifar, M., Mirhadi, S., Grami, A., Timuranjad, N. S., & Alavi, M. (2014). Tables of chemical composition of Iran's livestock and poultry feed sources (In Persian) https://civilica.com/doc/1067428.
Adewole, D. I., Rogiewicz, A., Dyck, B., & Slominski, B. A. (2017). Effects of canola meal source on the standardized ileal digestible amino acids and apparent metabolizable energy contents for broiler chickens. Poultry Science, 96(12), 4298-4306.
Agyekum, A. K., & Woyengo, T. A. (2022). Nutritive value of expeller/cold-pressed canola meal and pre-pressed solvent-extracted carinata meal for broiler chicken. Poultry Science101(1), 101528. https://doi.org/10.1016/j.psj.2021.101528
Alagawany, M., & Attia, A. (2015). Effects of feeding sugar beet pulp and Avizyme supplementation on performance, egg quality, nutrient digestion and nitrogen balance of laying Japanese quail. Avian biology research, 8(2), 79-88. https://doi.org/10.3184/175815515X14274754281188
Alagawany, M., Attia, A. I., Ibrahim, Z. A., Mahmoud, R. A., & El-Sayed, S. A. (2017). The effectiveness of dietary sunflower meal and exogenous enzyme on growth, digestive enzymes, carcass traits, and blood chemistry of broilers. Environmental Science and Pollution Research, 24(13), 12319-12327. DOI 10.1007/s11356-017-8934-4
Alagawany, M., Farag, M. R., Abd El-Hack, M. E., & Dhama, K. (2015). The practical application of sunflower meal in poultry nutrition. Advances in Animal and Veterinary Sciences, 3(12), 634-648.
Anderson, A. G., Utterback, P. L., & Parsons, C. M. (2022). Evaluation of the precision-fed rooster assay for detecting effects of supplemental enzymes on metabolizable energy. Poultry science, 101(2), 101603.
Association of Official Analytical Chemists, (2005). Official Methods of Analysis. Association of Official Analytical.  http://dx.doi.org/10.14737/journal.aavs/2015/3.12.634.648
Bilal, M., Mirza, M. A., Kaleem, M., Saeed, M., Reyad‐ul‐ferdous, M., & Abd El‐Hack, M. E. (2017). Significant effect of NSP‐ase enzyme supplementation in sunflower meal‐based diet on the growth and nutrient digestibility in broilers. Journal of Animal Physiology and Animal Nutrition101(2), 222-228. https://doi.org/10.1111/jpn.12552
Bourdillon, A., Carré, B., Conan, L., Duperray, J., Huyghebaert, G., Leclercq, B., ... & Wiseman, J. (1990). European reference method for the in vivo determination of metabolisable energy with adult cockerels: reproducibility, effect of food intake and comparison with individual laboratory methods. British Poultry Science31(3), 557-565. https://doi.org/10.1080/00071669008417287
Cordeiro, C. N., Freitas, E. R., Nepomuceno, R. C., Pinheiro, S. G., Souza, D. H., Watanabe, G. C. A., ... & Watanabe, P. H. (2022). Nutritional Composition, Metabolisable Energy and Total Use of Sunflower Seed Cake for Meat Quail. Brazilian Journal of Poultry Science24, eRBCA-2021. https://doi.org/10.1590/1806-9061-2021-1470
Costa, R. V., Silva, J. A., Galati, R. L., Silva, C. G. M., & Duarte Júnior, M. F. (2015). Sunflower (Helianthus annuus L.) and their coproduct in animal feed.
Ditta, Y. A., & King, A. J. (2017). Recent advances in sunflower seed meal as an alternate source of protein in broilers. World's Poultry Science Journal, 73(3), 527-542. https://doi.org/10.1017/S0043933917000423
Fisher, C., & Shannon, D. W. F. (1973). Metabolisable energy determinations using chicks and turkeys. British poultry science14(6), 609-613. https://doi.org/10.1080/00071667308416070
Friesen, O. D., Guenter, W., Marquardt, R. R., & Rotter, B. A. (1992). The effect of enzyme supplementation on the apparent metabolizable energy and nutrient digestibilities of wheat, barley, oats, and rye for the young broiler chick. Poultry Science, 71(10), 1710-1721. https://doi.org/10.3382/ps.0711710
Gupta, S. K. (2016). Brassicas. Breeding Oilseed Crops for Sustainable Production, 33-53. https://doi.org/10.1016/B978-0-12-801309-0.00003-3
Janssen, W. M. M. A., & Carré, B. (1985). Influence of fibre on digestibility of poultry feeds.
Kocher, A., Choct, M., Porter, M. D., & Broz, J. (2000). The effects of enzyme addition to broiler diets containing high concentrations of canola or sunflower meal. Poultry Science, 79(12), 1767-1774. https://doi.org/10.1093/ps/79.12.1767
Latifi, M., Moravej, H., Ghaziani, F., & Kim, W. K. (2023). Determination of prediction equations for apparent metabolizable energy corrected for nitrogen of corn gluten meal and canola meal in broilers. Poultry Science, 102(5), 102587.
Lee, J. E., Lee, J. Y., Kim, H. R., Shin, H. Y., Lin, T., & Jin, D. I. (2015). Proteomic analysis of bovine pregnancy-specific serum proteins by 2D fluorescence difference gel electrophoresis. Asian-Australasian journal of animal sciences, 28(6), 788. https://doi.org/10.5713%2Fajas.14.0790
Liu, W., Yan, X. G., Yang, H. M., Zhang, X., Wu, B., Yang, P. L., & Ban, Z. B. (2020). Metabolizable and net energy values of corn stored for 3 years for laying hens. Poultry science, 99(8), 3914-3920.
LoPez, G.; Leeson, S. (2008). Assessment of the nitrogen correction factor in evaluating metabolizable energy of corn and soybean meal in diets for broilers. Poultry Science : 298-306. https://doi.org/10.3382/ps.2007-00276
Losada, B., García-Rebollar, P., Álvarez, C., Cachaldora, P., Ibáñez, M. A., Méndez, J., & De Blas, J. C. (2010). The prediction of apparent metabolisable energy content of oil seeds and oil seed by-products for poultry from its chemical components, in vitro analysis or near-infrared reflectance spectroscopy. Animal feed science and technology, 160(1-2), 62-72. https://doi.org/10.1016/j.anifeedsci.2010.06.012
Mandal, A. B., Elangovan, A. V., Tyagi, P. K., Tyagi, P. K., Johri, A. K., & Kaur, S. (2005). Effect of enzyme supplementation on the metabolisable energy content of solvent-extracted rapeseed and sunflower seed meals for chicken, guinea fowl and quail. British poultry science, 46(1), 75-79. https://doi.org/10.1080/00071660400023979
Matterson, L. D., Potter, L. M., Stutz, M. W., & Singsen, E. P. (1965). The metabolizable energy of feed ingredients for chickens. The metabolizable energy of feed ingredients for chickens., (7). https://doi.org/10.1016/j.anifeedsci.2010.06.012
McDonald, P., Edwards, P. A., Greenhalgh, J. F. D., & Morgan, C. A. (2002). Animal Nutrition, Six edition.
McNab, J. M., & Boorman, K. N. (2002). Poultry feedstuffs: supply, composition and nutritive value (pp. x+-427). https://doi.org/10.1079/9780851994642.0000
Mushtaq, T., Sarwar, M., Ahmad, G., Mirza, M. A., Ahmad, T., Noreen, U., ... & Kamran, Z. (2009). Influence of sunflower meal based diets supplemented with exogenous enzyme and digestible lysine on performance, digestibility and carcass response of broiler chickens. Animal Feed Science and Technology, 149(3-4), 275-286. https://doi.org/10.1016/j.anifeedsci.2008.06.008
Nadeem, M. A., Anjum, M. I., Khan, A. G., & Azim, A. (2005). Effect of dietary supplementation of non-starch polysaccharide degrading enzymes on growth performance of broiler chicks. Pakistan Veterinary Journal, 25(4), 183.
National Research Council, & Subcommittee on Poultry Nutrition. (1994). Nutrient requirements of poultry: 1994. National Academies Press.
Njeri, F. M., Patterson, R., Gachuiri, C. K., & Kiarie, E. G. (2023). Effects of pretreating wheat middlings and sunflower meal with fiber degrading enzymes on components solubilization and utilization in broiler chickens. Translational Animal Science, 7(1), txad108. https://doi.org/10.1093/tas/txad108
Olukosi, O. A. (2021). Investigation of the effects of substitution levels, assay methods and length of adaptation to experimental diets on determined metabolisable energy value of maize, barley and soya bean meal. British Poultry Science, 62(2), 278-284. https://doi.org/10.1080/00071668.2020.1849558
Pereira, L. F. P., & Adeola, O. (2016). Energy and phosphorus values of sunflower meal and rice bran for broiler chickens using the regression method. Poultry Science, 95(9), 2081-2089. https://doi.org/10.3382/ps/pew089
Pesti, G. M., Bakalli, R. I., Driver, J. P., Atencio, A., & Foster, E. H. (2005). Poultry nutrition and feeding. The University of Georgia. Department of Poultry Science. Athens Georgia.
Pirgozliev, V. R., Mansbridge, S. C., Whiting, I. M., Abdulla, J. M., Rose, S. P., Kljak, K., ... & Atanasov, A. G. (2023). The benefits of exogenous xylanase in wheat–soy based broiler chicken diets, consisting of different soluble non-starch polysaccharides content. Poultry2(2), 123-133. https://doi.org/10.3390/poultry2020012
Rodrıguez ML, Ortiz LT, Alzueta C, Rebole A, J Trevin˜o (2005). Nutritive value of high-oleic acid sunflower seed for broiler chickens. Poultry Science. 84(3):395-402.
Rodrıguez, M. L., Ortiz, L. T., Treviño, J., Rebole, A., Alzueta, C., & Centeno, C. (1998). Studies on the nutritive value of full-fat sunflower seed in broiler chick diets. Animal feed science and technology71(3-4), 341-349. https://doi.org/10.1016/S0377-8401(97)00151-X
Rostagno, H. S., Albino, L. T., Hannas, M. I., Donzele, J. L., Sakomura, N. K., Perazzo, F. G., ... & Brito, C. O. (2017). Brazilian tables for poultry and swine. Feedstuff composition and nutritional requirements. Viçosa, Minas Gerais, 4th ed.; Universidade Federal de Viçosa: Visosa, Brazil.
Sanjuan, L. S., & Villamide, M. J. (2000). Nutritional evaluation of sunflower seed and products derived from them. Effect of oil extraction. British Poultry Science41(2), 182-192. https://doi.org/10.1080/713654913
Senkoylu, N., & Dale, N. (1999). Sunflower meal in poultry diets: a review1. World's Poultry Science Journal55(2), 153-174.https://doi.org/10.1079/WPS19990011
Sibbald, I. R., & Wolynetz, M. S. (1989). Research note: Pellet binder and steam pelleting as nitrogen-corrected true metabolizable energy contributors: An example of the statistics used to evaluate a component of a mixture. Poultry Science68(9), 1299-1302. https://doi.org/10.3382/ps.0681299
Sibbald, I. R., Summers, J. D., & Slinger, S. J. (1960). Factors affecting the metabolizable energy content of poultry feeds. Poultry Science39(3), 544-556. https://doi.org/10.3382/ps.0390544
Silva, E. A. D., Albino, L. F. T., Rostagno, H. S., Ribeiro Junior, V., Vieira, R. A., Campos, A. M. D. A., & Messias, R. K. G. (2012). Chemical composition and metabolizable energy values of feedstuffs for broiler chickens. Revista Brasileira de Zootecnia41, 648-654. https://doi.org/10.1590/S1516-35982012000300026
Tavernari, F. C., Albino, L. F. T., Morata, R. L., Dutra Júnior, W. M., Rostagno, H. S., & Viana, M. T. S. (2008). Inclusion of sunflower meal, with or without enzyme supplementation, in broiler diets. Brazilian Journal of Poultry Science, 10, 233-238.
Toghyani, M., Rodgers, N., Barekatain, M. R., Iji, P. A., & Swick, R. A. (2014). Apparent metabolizable energy value of expeller-extracted canola meal subjected to different processing conditions for growing broiler chickens. Poultry Science, 93(9), 2227-2236. https://doi.org/10.3382/ps.2013-03790
Tüzün, A. E., Olgun, O., Yıldız, A. Ö., & Şentürk, E. T. (2020). Effect of different dietary inclusion levels of sunflower meal and multi-enzyme supplementation on performance, meat yield, ileum histomorphology, and pancreatic enzyme activities in growing quails. Animals, 10(4), 680. https://doi.org/10.3390/ani10040680
Waititu, S. M., Sanjayan, N., Hossain, M. M., Leterme, P., & Nyachoti, C. M. (2018). Improvement of the nutritional value of high-protein sunflower meal for broiler chickens using multi-enzyme mixtures. Poultry science, 97(4), 1245-1252. https://doi.org/10.3382/ps/pex418
Yaqub Far, A. and Nouri Imamzadeh, A. (2008) Determination of metabolizable energy of soybean, canola and sunflower meal using adult roosters. Agricultural research: water, soil and plants in agriculture. The eighth volume. Number four. winter. 87 p. 33. (In Persian).
Zamani, R., Jonmohammadi, H., Mirgheleng, S. A., & Didehban, Y. (2023). Determination of metabolizable energy value in Canola meal with and without enzymes addition by regression method in adult leghorn roosters. Research On Animal Production1402(42), 11-19. (In Persian). http://dx.doi.org/10.61186/rap.14.42.11