تاثیر منابع مختلف چربی بر علائم حیاتی، فراسنجه‌های خونی و هماتولوژی میش‌های آبستن و غیرآبستن در شرایط تنش گرمایی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه تغذیه دام و طیور، دانشکده علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 گروه تغذیه دام طیور، دانشکده علوم دامی، دانشگاه علوم کشاورزی منابع طبیعی گرگان، گرگان، ایران

چکیده

هدف این پژوهش، مقایسه اثر منابع مختلف چربی بر علائم حیاتی، فراسنجه­های بیوشیمیایی و هماتولوژیکی خون میش‌های آبستن و غیرآبستن در شرایط تنش گرمایی بود. بدین منظور چهل رأس میش دالاق (20 رأس سه ماه آبستن و 20 رأس غیر آبستن) انتخاب شدند. این آزمایش در قالب آزمایش فاکتوریل چهار در دو بر پایه طرح کامل تصادفی با پنج تکرار انجام شد. تیمارها شامل: 1- جیره شاهد، 2- جیره حاوی 6 درصد دانه گلرنگ، 3- جیره حاوی 5/1 درصد روغن گلرنگ و 4- جیره حاوی 5/1 درصد روغن پالم بود. دام‌ها به­مدت 42 روز نگهداری شدند. با توجه به نتایج پژوهش حاضر دمای بدن، ضربان قلب و تعداد تنفس میش‌ها تحت تأثیر وضعیت فیزیولوژیکی و نوع چربی مصرفی قرار نگرفت. غلظت گلوکز، تری‌گلیسیرید و اوره خون در گروه غیر آبستن بیشتر از گروه آبستن بود (05/0≥P). میش‌های دریافت‌کننده منابع مختلف چربی نسبت به شاهد غلظت کلسترول، تری‌گلیسیرید، اوره، پروتئین کل، آلبومین و گلوبولین بالاتری داشتند (05/0≥P). غلظت بتاهیدروکسی بوتیرات، اسیدهای چرب غیر استریفه، مالون‌دی‌آلدئید و ظرفیت آنتی‌اکسیدانی کل میش‌های آبستن بیشتر از میش‌های غیر آبستن بود (05/0≥P). اختلاف معنی­داری بین میش­های آبستن و غیر آبستن در غلظت کورتیزول و انسولین مشاهده نشد. اضافه نمودن منابع مختلف چربی باعث کاهش غلظت کورتیزول، مالون‌دی‌آلدئید، اسیدهای چرب غیر استریفه و افزایش ظرفیت آنتی­اکسیدانی کل شد. درمجموع باتوجه به نتایج حاضر استفاده از منابع مختلف چربی در میش‌های آبستن و غیر آبستن اثر منفی تنش گرمایی بر فراسنجه‌های اندازه‌گیری شده را کاهش داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of different fat sources on vital signs, blood parameters and hematology of pregnant and non-pregnant ewes under heat stress conditions

نویسندگان [English]

  • Katayoun Mehrani 1
  • Taghi Ghoorchi 2
  • Abdolhakim Toghdory 1
1 Department of Animal and Poultry nutrition, Animal Science Faculty, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
2 Department of Animal and Poultry nutrition, Animal Science Faculty, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
چکیده [English]

This study aimed to compare the effect of different fat sources on vital signs, biochemical and hematological blood parameters of pregnant and non-pregnant ewes under heat stress conditions. For this purpose, 40 ewes were selected (20 three-month pregnant and 20 non-pregnant). This experiment was conducted according to a four-by-two factorial experiment based on a completely randomized design with five replications. The treatments included: 1- control diet, 2- diet containing 6% safflower seeds, 3- diet containing 1.5% safflower oil and 4- diet containing 1.5% palm oil. The animals were kept for 42 days. According to the results of the present study, the body temperature, heart rate and breathing rate of the ewes were not affected by the physiological state and the type of fat consumed. The concentration of glucose, triglyceride and blood urea in the non-pregnant group was higher than in the pregnant group (P≥0.05). Ewes receiving different fat sources had higher cholesterol, triglyceride, urea, total protein, albumin and globulin concentrations than the control (P≥0.05). The concentration of beta-hydroxybutyrate, non-esterified fatty acids, malondialdehyde and total antioxidant capacity of pregnant ewes was higher than that of non-pregnant ewes (P≥0.05). No significant difference was observed between pregnant and non-pregnant ewes in cortisol and insulin concentrations. Adding different sources of fat decreased the concentration of cortisol, malondialdehyde, non-esterified fatty acids and increased the total antioxidant capacity. In general, according to the present results, the use of different sources of fat in pregnant and non-pregnant ewes reduced the negative effect of heat stress on the measured parameters.

کلیدواژه‌ها [English]

  • Blood parameters
  • Dalagh ewe
  • Heat stress
  • Hematology
  • Vital signs

Extended Abstract

Objective

Climate change caused by greenhouse gas emissions is an event that affects the production of animal-based food and food security in general. Global warming creates climatic conditions and intensifies heat stress for domestic animals. As a result, high temperatures can negatively affect livestock growth and productivity, because with thermoregulation mechanisms' activation, dry matter intake decreases and energy demand increases. Heat stress occurs when the temperature and relative humidity of the air, wind, and sunlight change, such that the neutral zone, defined as the area of heat production and heat loss from the body, changes. Information on dry air temperature and relative humidity, wind speed, and rainfall help diagnose heat stress; but the combination of dry air temperature and relative humidity gives the temperature-humidity index. Also, the blood parameters of livestock are sensitive to changes in environmental temperature and play an important role in physiological responses to stressors. This study was designed to investigate the effects of feeding different fat sources on vital signs, biochemical and hematological parameters of pregnant and non-pregnant ewes. Specifically, the effects of different fats such as palm oil and safflower seed on parameters such as glucose concentration, triglycerides, cholesterol, plasma proteins, antioxidant capacity and liver enzymes in pregnant and non-pregnant ewes were investigated.

 

Method

 For this purpose, forty Dalagh ewes (20 three-month pregnant and 20 non-pregnant) were selected. This experiment was conducted in a four-by-two factorial experiment based on a completely randomized design with five replications. The treatments included: 1- basal diet without fat supplement, 2- basal diet containing 6% safflower seeds, 3- diet containing 1.5% safflower oil, and 4- basal diet containing 1.5% palm oil. The animals in each group were kept in individual cages for 42 days. The daily feed was supplied to the animals in a completely mixed form, and fat supplements were provided to the animals daily. A digital thermometer was used to measure rectal temperature, which was placed in the animal's rectum and its temperature was recorded immediately. The heart rate was measured by placing a stethoscope in the chest area of ​​the animals. Respiratory rate was assessed by visual observation of the number of times the animal's flanks rose and fell in one minute. Blood samples were taken from the jugular vein of pregnant and non-pregnant ewes in the final week of the period, four hours after morning feeding (at peak heat).

 

Results

     According to the present study, body temperature, heart rate, and respiratory rate of ewes were not affected by physiological status and type of fat consumed. Blood glucose, triglyceride, and urea concentrations were higher in the non-pregnant group than in the pregnant group (P≥0.05). Different fat sources could also affect the concentrations of cholesterol, triglyceride, urea, total protein, albumin, globulin, and the ratio of these two (P≥0.05). Among these, ewes receiving palm oil and safflower seeds had higher cholesterol concentrations than the other two groups (P≥0.05). The triglyceride concentration of ewes receiving palm oil was higher than the other three groups (P≥0.05). The interaction effect of physiological status and type of dietary fat caused significant differences in blood parameters such as glucose, cholesterol, triglyceride, urea, total protein, albumin, globulin, and the ratio of these two (P≥0.05). According to the results of the present study, high-density lipoprotein (HDL) and low-density lipoprotein (LDL) were not affected by the physiological status of ewes, nor was HDL affected by the interaction effects. Meanwhile, the very low-density lipoprotein concentration of non-pregnant ewes was higher than that of pregnant ewes (P≥0.05). According to the results of the present study, the LDL concentration of pregnant ewes × palm oil also increased under the interaction effects (P≥0.05); however, this difference was not significant with pregnant ewes × safflower seed, non-pregnant × safflower seed, and non-pregnant × safflower oil. According to the results of the present study, the white blood cell concentration of pregnant ewes in the control group and those receiving different sources of fat also increased under the interaction effects with non-pregnant × palm oil (P≥0.05); however, this difference was not significant with non-pregnant × control, non-pregnant × safflower seed, and non-pregnant × safflower oil. According to the results of the present study, the concentration of beta-hydroxybutyrate, non-esterified fatty acids, malondialdehyde, and total antioxidant capacity of pregnant ewes was higher than that of non-pregnant ewes (P≥0.05), although there was no statistical difference between the cortisol concentration of pregnant and non-pregnant ewes. The concentration of alanine transaminase enzyme in the liver of ewes was not significantly affected by the physiological status, type of fat and their interactions, and the concentration of aspartate aminotransferase in the liver was not affected by the physiological status of ewes.

 

Conclusions

    Considering the positive effects of fat sources on cortisol and total antioxidant capacity, using these sources is recommended during heat stress.

 

Author Contributions

Conceptualization, Taghi Ghoorchi., and Abdolhakim Toghdory.,methodology, Katayoun Mehrani and Taghi Ghoorchi software, Katayoun Mehrani and Abdolhakim Toghdory.;validation, Taghi Ghoorchi., and Abdolhakim Toghdory.; formal analysis, Katayoun Mehrani and Abdolhakim Toghdory.; investigation Katayoun Mehrani and Taghi Ghoorchi., resources, Katayoun Mehrani and Taghi Ghoorchi.;data curation, Taghi Ghoorchi.; writing—original draft preparation, Katayoun Mehrani., writing—review and editing, Taghi Ghoorchi.; visualization, Taghi Ghoorchi.; supervision, Taghi Ghoorchi.; project administration, Taghi Ghoorchi.; funding acquisition, Katayoun Mehrani and Taghi Ghoorchi. All authors have read and agreed to the published version of the manuscript

 

 

Data Availability Statement

Data available on request from the authors.

Acknowledgements

We would like to thank the Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, for providing the field and laboratory facilities for this research.

Ethical considerations

The study was approved by the Ethics Committee of Gorgan University of Agricultural Sciences and Natural Resources. The authors avoided data fabrication, falsification, plagiarism,and misconduct.

Conflict of interest

The author declares no conflict of interest

منابع

آهنگرانی، محمد علی؛ دهقانی، محمد رضا و ناصریان، عباسعلی . (1400). اثر افزودن منابع چربی در شیر بر عملکرد، رشد، سلامتی، فراسنجه های شکمبه ای و خونی گوساله های ماده هلشتاین در ماه اول بعد از تولد. تولیدات دامی, 23(2), 179-189.
‏ اخلاقی، بهزاد؛ قربانی، غلام‌رضا؛ علیخانی، مسعود؛ کارگر، شهریار و صادقی سفید مزگی، علی. (1396). اثر سطح تولید و منبع مکمل چربی بر عملکرد تولید، گوارش‌پذیری مواد مغذی و فراسنجه‌های خونی گاوهای هلشتاین تک شکم‌زا تحت تنش گرمایی. نشریه پژوهش‌ در نشخوار کنندگان، 5(1)، 1-22.
ارفعی آخوله، اکبر؛ شیرازی، محمدرضا؛ رشنوادی، مهدی؛ رسولی, آریا؛ نوری، محمد و راضی جلالی، محمد . (1393). بررسی تغییرات برخی هورمون‌ها و پارامترهای بیوشیمیایی سرم خون گاومیش در دو فصل سرد و گرم در شهرستان اهواز. نشریه دامپزشکی ایران, 11(1), 15-23.
البرزی،علیرضا؛ حسینی، ماندانا؛ بهرامی، سمیه؛ قربانپور، مسعود و تابنده، محمد رضا. (1401). هیپرگلوبولینمی و افزایش ناپایداری اسمزی غشای گویچه‌های قرمز میزبانان واسط آلوده به انگل زئونوتیک لینگواتولا سراتا. زیست شناسی کاربردی, 35(1), 45-60.
‏بدخشان، یدالله و آبشناس، جلیل. (1394). تغییرات دمای بدن، تعداد تنفس، ضربان قلب و برخی فراسنجه های بیوشیمی­ سرم گوسفندان جیرفت در طول استرس گرمایی تابستانی. مجله تحقیقات دامپزشکی، 70(3)، 333-339.
ساجدی سلطان آباد، ژیلا؛ امیدی، آرش و منتظر تربتی، محمد باقر. (1394). اثر سن، جنس و آبستنی بر تغییرات چربی و لیپوپروتئین‌های سرم خون شترهای دوکوهانه منطقه اردبیل. پژوهش های علوم دامی (دانش کشاورزی)، 25(4)، 107-116.
عموزاده آرائی،کامل؛ اسدی، محمد؛ مهرانی، کتایون و خادم، قاسم. (1402). اثرات تنش گرمایی در گاوهای شیری. علمی-ترویجی (حرفه‌ای) دامستیک، 23(1)، 30-41.
قاسمی،ابراهیم؛ صفری فروشانی، محمد حسین؛ علیخانی، مسعود و شیرانی شمس آبادی، جواد . (1398). فراسنجه‌های متابولیک، وضعیت ضداکسیداتیو، تغییرات وزن بدن و عملکرد گاوها طی دوره انتقال. علوم دامی ایران. 50(3), 171-184.
قهرمانی، مهدی؛ تقی زاده، اکبر؛ حسین خانی، علی؛ میرزایی الموتی، حمیدرضا؛ مقدم، غلامعلی و پایا، حمید. (1398). تاثیر تغذیه منابع مختلف چربی‌ در اواخر آبستنی و اوایل دوره شیردهی بر قابلیت هضم ظاهری، فراسنجه‌های شکمبه‌ای و الگوی تغییرات اسیدهای چرب شیر میش‌های افشاری. پژوهش­های علوم دامی ایران، 11(4)، 437-449.
‏کریمی، اباذر؛ علی جو، یونس؛ کاظمی بن چناری، مهدی؛ میرزایی، مهدی و صدری، حسن. (1400). بررسی اثر متقابل روغن سویا و علوفه یونجه در جیره استارتر گوساله‌های شیرخوار هلشتاین بر عملکرد، فراسنجه­های رشد، تخمیر شکمبه‌ای و متابولیت‌های خونی. پژوهش­های علوم دامی ایران، 13(2)، 321-334.
گنج خانلو، مهدی؛ هاشمی، صادق؛ دهقان بنادکی، مهدی؛ زالی، ابوالفضلو کهرام، حمید. (1393). اثر تغذیه اسیدهای چرب اشباع و غیر اشباع قبل از زایش بر عملکرد تولیدی و فراسنجه‌های خونی گاوهای شیرده هلشتاین چند بار زایش کرده. تحقیقات دام و طیور، 3(2)، 57-69.
مرادی، هادی؛ گنج خانلو، مهدی؛ زالی، ابوالفضل و دهقان بنادکی، مهدی. (1397). تأثیر منابع مختلف چربی بر عملکرد و شاخص‌های فعالیت کبدی گاوهای شیری هلشتاین در دورۀ انتقال. علوم دامی ایران، 49(2)، 193-201.
مهرانی، کتایون؛ عموزاده آرائی، کامل و اسدی، محمد. (1402). اثرات تنش گرمایی بر عملکرد و وضعیت فیزیولوژیک در نشخوارکنندگان کوچک. علمی-ترویجی (حرفه‌ای) دامستیک، 25(1)، 5-16.
میرزائی چشمه گچی، سمیه؛ معینی، محمد مهدی و خمیس آبادی، حسن. (1399). اثر سطوح مختلف پودر دانه رازیانه و سیاه‌دانه بر فراسنجه‌های تخمیر شکمبه و جمعیت پروتوزا گوسفندان سنجابی به روش برون تنی و درون تنی. تحقیقات تولیدات دامی، 12(3)،49-63.
ناصریان، عباسعلی؛ علمی، حسن؛ طهماسبی، عبدالمنصور و فرزانه، نیما. (1396). تاثیر دانه‌های کتان و کلزا بر قابلیت هضم و برخی فراسنجه‌های خونی میش‌های کردی در اواخر دوره آبستنی. علوم دامی، 30(115)، 167-178.
نصیری، جواد؛ علی عربی، حسن و زمانی، پویا. (1400). اثر انواع نمک‌های کلسیمی اسیدهای چرب بر عملکرد و الگوی اسیدهای چرب شیر گاوهای هلشتاین. پژوهش­های علوم دامی ایران، 13(2)، 175-192.
 
REFERENCES
Abdelatif, A. M., & Alameen, A. O. (2012). Influence of season and pregnancy on thermoregulation and hematological profile in crossbred dairy cows in a tropical environment. Global Veterinaria9, 334-340.‏ https://doi.org/10.5829/idosi.gv.2012.9.3.65130
Alfano, F. R. D. A., Palella, B. I., & Riccio, G. (2011). Thermal environment assessment reliability using temperature—humidity indices. Industrial Health49(1), 95-106.‏ https://doi.org/10.2486/indhealth.MS1097
Anna, C., Man-Li, Y., Jeng-Hsiu, H., Pesus, C., Shin-Kuo, S., & Heung-Tat, N. (1995). Alterations of serum lipid levels and their biological relevances during and after pregnancy. Life Sciences56(26), 2367-2375.‏ https://doi.org/10.1016/0024-3205(95)00230-4
Badiei, A., Aliverdilou, A., Amanlou, H., Beheshti, M., Dirandeh, E., Masoumi, R., & Petit, H. V. (2014). Postpartum responses of dairy cows supplemented with n-3 fatty acids for different durations during the peripartal period. Journal of Dairy Science97(10), 6391-6399. https://doi.org/10.3168/jds.2013-7743
Baee, H., Ghoorchi, T., Toghdory, A., & Mokhtarpour, A. (2023). Growth performance, ruminal fermentation characteristics and microbial protein synthesis of lambs fed palmitic and stearic acid. Animal Feed Science and Technology302, 115674.‏ https://doi.org/10.1016/j.anifeedsci.2023.115674
Ballou, M. A. (2013). Enhancing calf immunity through nutrition. In Florida Ruminant Nutrition Symposium (pp. 50-63). ‏
Ballou, M. A., Cruz, G. D., Pittroff, W., Keisler, D. H., & DePeters, E. J. (2008). Modifying the acute phase response of Jersey calves by supplementing milk replacer with omega-3 fatty acids from fish oil. Journal of Dairy Science91(9), 3478-3487.‏ https://doi.org/10.3168/jds.2008-1016
Bauman, D. E., & Currie, W. B. (1980). Partitioning of nutrients during pregnancy and lactation: a review of mechanisms involving homeostasis and homeorhesis. Journal of Dairy Science63(9), 1514-1529.‏ https://doi.org/10.3168/jds.S0022-0302(80)83111-0
Baumgard, L. H., & Rhoads Jr, R. P. (2013). Effects of heat stress on postabsorptive metabolism and energetics. Annual Review of Animal Biosciences1(1), 311-337. https://doi.org/10.1146/annurev-animal-031412-103644
‏Beede, D. K., & Collier, R. J. (1986). Potential nutritional strategies for intensively managed cattle during thermal stress. Journal of Animal Science62(2), 543-554. https://doi.org/10.2527/jas1986.622543x
‏Bhatt, R. S., Soren, N. M., Tripathi, M. K., & Karim, S. A. (2011). Effects of different levels of coconut oil supplementation on performance, digestibility, rumen fermentation and carcass traits of Malpura lambs. Animal Feed Science and Technology164(1-2), 29-37. https://doi.org/10.1016/j.anifeedsci.2010.11.021
‏Bianchi, A. E., Macedo, V. P., França, R. T., Lopes, S. T., Lopes, L. S., Stefani, L. M., ... & Da Silva, A. S. (2014). Effect of adding palm oil to the diet of dairy sheep on milk production and composition, function of liver and kidney, and the concentration of cholesterol, triglycerides and progesterone in blood serum. Small Ruminant Research117(1), 78-83.‏ https://doi.org/10.1016/j.smallrumres.2013.12.025
Cebra, C. K., Garry, F. B., Getzy, D. M., & Fettman, M. J. (1997). Hepatic lipidosis in anorectic, lactating Holstein cattle: a retrospective study of serum biochemical abnormalities. Journal of Veterinary Internal Medicine11(4), 231-237.‏ https://doi.org/10.1111/j.1939-1676.1997.tb00096.x
Chen, H., Wang, C., Huasai, S., & Chen, A. (2022). Effect of prepartum dietary energy density on beef cow energy metabolites, and birth weight and antioxidative capabilities of neonatal calves. Scientific Reports12(1), 4828.‏ https://doi.org/10.1038/s41598-022-08809-6
Dangi, S. S., Gupta, M., Maurya, D., Yadav, V. P., Panda, R. P., Singh, G., & Sarkar, M. (2012). Expression profile of HSP genes during different seasons in goats (Capra hircus). Tropical Animal Health and Production44, 1905-1912.‏ https://doi.org/10.1007/s11250-012-0155-8
Dirandeh, E., Towhidi, A., Pirsaraei, Z. A., Ganjkhanlou, M., Zeinoaldini, S., Roodbari, A. R., & Najafi, M. (2012). Effects of different polyunsaturated fatty acid supplementation during the postpartum periods of early lactating dairy cows on insulin resistance and somatotropic axis. Reproduction, Fertility and Development25(1), 256-256.‏ https://doi.org/10.1071/RDv25n1Ab216
Do Prado, R. M., Palin, M. F., Do Prado, I. N., Dos Santos, G. T., Benchaar, C., & Petit, H. V. (2016). Milk yield, milk composition, and hepatic lipid metabolism in transition dairy cows fed flaxseed or linola. Journal of Dairy Science99(11), 8831-8846.‏ https://doi.org/10.3168/jds.2016-11003
Dos Santos, D. D. S., Klauck, V., Campigotto, G., Alba, D. F., Dos Reis, J. H., Gebert, R. R., & Da Silva, A. S. (2019). Benefits of the inclusion of açai oil in the diet of dairy sheep in heat stress on health and milk production and quality. Journal of Thermal Biology84, 250-258. https://doi.org/10.1016/j.jtherbio.2019.07.007
‏Douglas, G. N., Overton, T. R., Bateman II, H. G., & Drackley, J. K. (2004). Peripartal metabolism and production of Holstein cows fed diets supplemented with fat during the dry period. Journal of Dairy Science87(12), 4210-4220.‏ https://doi.org/10.3168/jds.S0022-0302(04)73566-3
Façanha, D. A. E., Vasconcelos, A. M., Lima, F. R. G., Eloy, Â. M., Ayura, A. O. L., Guilhermino, M. M., & Landim, A. V. (2012). Thermoregulatory traits and performance of dairy goats in early lactation in tropical weather. ‏
Fecteau, M. E. (2020). Alterations in body temperature. In Large animal internal medicine (pp. 33-42). Mosby. ‏
Garcia, M., Shin, J. H., Schlaefli, A., Greco, L. F., Maunsell, F. P., Santos, J. E. P., ... & Thatcher, W. W. (2015). Increasing intake of essential fatty acids from milk replacer benefits performance, immune responses, and health of preweaned Holstein calves. Journal of Dairy Science98(1), 458-477.‏ https://doi.org/10.3168/jds.2014-8384
Habeeb, A. A., Gad, A. E., & Atta, M. A. (2018). Temperature-humidity indices as indicators to heat stress of climatic conditions with relation to production and reproduction of farm animals. International Journal of Biotechnology and Recent Advances1(1), 35-50. https://doi.org/10.18689/ijbr-1000107
Hamzaoui, S., Caja, G., Such, X., Albanell, E., & Salama, A. A. (2021). Effect of soybean oil supplementation on milk production, digestibility, and metabolism in dairy goats under thermoneutral and heat stress conditions. Animals11(2), 350.‏ https://doi.org/10.3390/ani11020350
Helal, A., Hashem, A. L. S., Abdel-Fattah, M. S., & El-Shaer, H. M. (2010). Effect of heat stress on coat characteristics and physiological responses of Balady and Damascus goats in Sinai, Egypt. ‏ American-Eurasian Journal of Agricultural & Environmental Science, 7, 60-69. https://doi.org/10.4236/ajps.2021.126064
Jarvis, G., & Moore, E. R. B. (2010). 46. Lipid metabolism and the rumen microbial ecosystem. Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, Heidelberg, 2246-2257.‏ https://doi.org/10.1007/978-3-540-77587-4
Jenkins, T. C. (1994). Regulation of lipid metabolism in the rumen. The Journal of Nutrition124, 1372S-1376S. https://doi.org/10.1093/jn/124.suppl_8.1372S
‏Ji, X., Liu, N., Wang, Y., Ding, K., Huang, S., & Zhang, C. (2023). Pregnancy Toxemia in ewes: a review of Molecular Metabolic mechanisms and Management Strategies. Metabolites13(2), 149.‏ https://doi.org/10.3390/metabo13020149
Kargar, S., Ghorbani, G. R., Fievez, V., & Schingoethe, D. J. (2015). Performance, bioenergetic status, and indicators of oxidative stress of environmentally heat-loaded Holstein cows in response to diets inducing milk fat depression. Journal of Dairy Science98(7), 4772-4784.‏ https://doi.org/10.3168/jds.2014-9100
Klopp, R. N., Franco, J. F. H., Hogenesch, H., Dennis, T. S., Cowles, K. E., & Boerman, J. P. (2022). Effect of medium-chain fatty acids on growth, health, and immune response of dairy calves. Journal of Dairy Science105(9), 7738-7749.‏
Lascano, G. J., Koch, L. E., & Heinrichs, A. J. (2016). Precision-feeding dairy heifers a high rumen-degradable protein diet with different proportions of dietary fiber and forage-to-concentrate ratios. Journal of Dairy Science99(9), 7175-7190.‏ https://doi.org/10.3168/jds.2016-11190
Litherland, N. B., Thire, S., Beaulieu, A. D., Reynolds, C. K., Benson, J. A., & Drackley, J. K. (2005). Dry matter intake is decreased more by abomasal infusion of unsaturated free fatty acids than by unsaturated triglycerides. Journal of Dairy Science88(2), 632-643. https://doi.org/10.3168/jds.S0022-0302(05)72727-2
‏Marai, I. F. M., El-Darawany, A. A., Fadiel, A., & Abdel-Hafez, M. A. M. (2007). Physiological traits as affected by heat stress in sheep—a review. Small Ruminant Research71(1-3), 1-12.‏ https://doi.org/10.1016/j.smallrumres.2006.10.003
Marcu, A., Stef, L., Julean, C., Pet, I., Gherasim, V., Pacala, N., ... & Stef, D. S. (2022). Effect of the Supplementation with Protected Fats in the Diet of Dairy Cows on The Quantity and Quality of Milk. Scientific Papers Animal Scievce and Biotechnologies55(2), 186-186.‏ https://doi.org/10.3458/spa.2022-7160
McManus, C. M., Lucci, C. M., Maranhão, A. Q., Pimentel, D., Pimentel, F., & Paiva, S. R. (2022). Response to heat stress for small ruminants: Physiological and genetic aspects. Livestock Science263, 105028.‏
Moallem, U., Rozov, A., Gootwine, E., & Honig, H. (2012). Plasma concentrations of key metabolites and insulin in late-pregnant ewes carrying 1 to 5 fetuses. Journal of Animal Science90(1), 318-324.‏ https://doi.org/10.2527/jas.2011-3905
National Research Council. (2007). Nutrient Requirements of Small Ruminants: sheep, oats, cervids, and new world camelids. National Academy Press.‏
Obrien, M. D., Rhoads, R. P., Sanders, S. R., Duff, G. C., & Baumgard, L. H. (2010). Metabolic adaptations to heat stress in growing cattle. Domestic Animal Endocrinology38(2), 86-94. https://doi.org/10.1016/j.domaniend.2009.08.005
Ocak, S., Davran, M. K., & Güney, O. (2010). Small ruminant production in turkey: highlighting in goat production. Tropical Animal Health and Production42, 155-159.‏ https://doi.org/10.1007/s11250-009-9402-z
Okoruwa, M. I. (2014). Effect of heat stress on thermoregulatory, live bodyweight and physiological responses of dwarf goats in southern Nigeria. European Scientific Journal10(27). ‏
Parvar, R., Ghoorchi, T., & Shargh, M. S. (2017). Influence of dietary oils on performance, blood metabolites, purine derivatives, cellulase activity and muscle fatty acid composition in fattening lambs. Small Ruminant Research150, 22-29. https://doi.org/10.1016/j.smallrumres.2017.03.004
‏Patra, A. K., & Kar, I. (2021). Heat stress on microbiota composition, barrier integrity, and nutrient transport in gut, production performance, and its amelioration in farm animals. Journal of Animal Science and Technology63(2), 211.‏ https://doi.org/10.5187/jast.2021.e48
Petit, H. V., Palin, M. F., & Doepel, L. (2007). Hepatic lipid metabolism in transition dairy cows fed flaxseed. Journal of Dairy Science90(10), 4780-4792.‏ https://doi.org/10.3168/jds.2007-0066
Phulia, S. K., Upadhyay, R. C., Jindal, S. K., & Misra, R. P. (2010). Alteration in surface body temperature and physiological responses in Sirohi goats during day time in summer season. Indian Journal of Animal Sciences80(4), 340. https://epubs.icar.org.in/index.php/IJAnS/article/view/100
‏Piccione, G., Caola, G., Giannetto, C., Grasso, F., Runzo, S. C., Zumbo, A., & Pennisi, P. (2009). Selected biochemical serum parameters in ewes during pregnancy, post-parturition, lactation and dry period. Animal Science Papers and Reports27(4), 321-330.‏ https://doi.org/10.5348/apr.2009-1246
Relling, A. E., & Reynolds, C. K. (2007). Feeding rumen-inert fats differing in their degree of saturation decreases intake and increases plasma concentrations of gut peptides in lactating dairy cows. Journal of Dairy Science90(3), 1506-1515. https://doi.org/10.3168/jds.S0022-0302(07)71636-3
‏Salama, A. A. K., Caja, G., Hamzaoui, S., Badaoui, B., Castro-Costa, A., Façanha, D. A. E., & Bozzi, R. (2014). Different levels of response to heat stress in dairy goats. Small Ruminant Research121(1), 73-79.‏ https://doi.org/10.1016/j.smallrumres.2013.11.021
Salem, H. B., Krzeminski, R., Ferlay, A., & Doreau, M. (1993). Effect of lipid supply on in vivo digestion in cows: Comparison of hay and corn silage diets. Canadian Journal of Animal Science73(3), 547-557.‏ https://doi.org/10.4141/cjas93-059
Šamanc, H., Gvozdić, D., Fratrić, N., Kirovski, D., Djoković, R., Sladojević, Ž., & Cincović, M. (2015). Body condition score loss, hepatic lipidosis and selected blood metabolites in Holstein cows during transition period.  Animal Science Papers and Reports, 33(1), 35-47. https://doi.org/10.3234/apr.2015-0357
Sampath, H., & Ntambi, J. M. (2005). The fate and intermediary metabolism of stearic acid. Lipids40(12), 1187-1191. https://doi.org/10.1007/s11745-005-1484-z
‏Santos, R. D., Macedo Junior, G. D. L., Silva, S. D., Sousa, L. F., & Andrade, M. E. B. (2017). The propylene glycol supplementation improves energy metabolism in pregnant sheep.‏ Animal Sciences, 39(3), 297-302. http://dx.doi.org/10.4025/actascianimsci.v39i3.35101
Sejian, V., & Srivastava, R. S. (2010). Effects of melatonin on adrenal cortical functions of Indian goats under thermal stress. Veterinary Medicine International2010(1), 348919.‏ https://doi.org/10.4061/2010/348919
Sejian, V., Silpa, M. V., Reshma Nair, M. R., Devaraj, C., Krishnan, G., Bagath, M., & Bhatta, R. (2021). Heat stress and goat welfare: Adaptation and production considerations. Animals11(4), 1021.‏ https://doi.org/10.3390/ani11041021
Simanihuruk, K., Tarigan, A., & Pond, K. R. (2019). Nutritional support for small ruminant development based on oil palm by-products. WARTAZOA. Indonesian Bulletin of Animal and Veterinary Sciences28(4), 189-198.‏ http://dx.doi.org/10.14334/wartazoa.v28i4.1919
SAS Institute. (2004). User’s Guide. Version 9.1: Statistics. SAS Institute, Cary, NC.Thom EC. The discomfort index. Weatherwise, 1959; 12: 57-59.
Yadav, R. K., Singh, M., Roy, S., Ansari, M. N., Saeedan, A. S., & Kaithwas, G. (2018). Modulation of oxidative stress response by flaxseed oil: Role of lipid peroxidation and underlying mechanisms. Prostaglandins & other lipid mediators135, 21-26.‏ https://doi.org/10.1016/j.prostaglandins.2018.02.003